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Abstract 

The context for this work is the application of statistical science in the study of 

interrelationships between fauna and environments undergoing change in landscape ecology.  

The core of the thesis is a collection of papers that can be viewed in two ways:  1) a set of major 

studies in statistical practice in the field of ecology, and 2) as contributions to new knowledge 

on the effects of landscape vegetation transformation on fauna, in particular birds, in south-

eastern Australia. These papers exhibit high-level and effective contributions to ecological 

knowledge and conservation of wildlife through an ability to understand ecological issues from 

a statistical perspective and subsequent application of advanced statistical practice.  The 

introductory chapter provides an overview of some of the statistical thinking behind my 

contributions through statistical design and statistical modelling, and highlights some key 

findings and new understandings in ecology. The focus in this thesis is as much on scientific 

process as it is on biological outcomes.  

 

The statistical thinking presented in all papers was directed by me as a joint principal 

investigator; in all cases I have been a co-leader of the research. My contribution in design and 

analysis of four major studies presented here is emphasised.  Key roles involved in the research 

presented include: 

 

 Recognising natural systems in the landscape worthy of study and seizing the 

opportunity to study them (ecological serendipity). ‘Treatments’ (ecological contrasts) 

are selected and planned and are assigned randomly in true experiments; in quasi-

experiments, treatments may already exist, are not randomly assigned but can be taken 

advantage of. 

 Formulating projects and asking interesting and important questions. 

 Considering the ‘best’ study design to yield high quality data suitable for addressing the 

key questions.  

 Overseeing the implementation of the design, fieldwork protocols, and providing input 

into data collection and collation. 

 Formulating statistical models for analysis. 

 Undertaking all of the data analysis and taking responsibility for statistical analysis and 

resulting inferences. Where necessary, adapting existing methodologies suitable for 

solving the problem at hand.  

 Developing suitable statistical presentation of results. 

 Interpreting and explaining results. 

 Writing scientific articles and submitting them for publication.  
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Interdisciplinary collaboration has resulted in many significant scientific contributions to 

ecological knowledge in the study of relationships between faunal biodiversity and landscape 

transformation.  In particular, the importance of statistical aspects of experimental design in 

large-scale, long-term research studies has been demonstrated. Many new insights into effects of 

plantation establishment and subsequent maturation on different groups of biota have been 

gained.  Cross-sectional and temporal responses to revegetation, regrowth, and remnant 

vegetation at multiple spatial scales have been quantified. Composite indices have been 

developed for classifying biodiversity values of farms by novel applications of statistical ideas.  

Furthermore, significant contributions have been made in developing sound statistical 

methodology for the study of long-term trends in reporting rates of birds, using structurally 

complex presence-absence data. These methods have been recently adapted by Birdlife 

Australia and now form the basis for summarising trends in terrestrial birds.  

 

(See State of Australia's Birds: Headline Trends for Terrestrial Birds, O'Connor, Ehmke, & 

Cunningham, 2015).   
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The statistician’s job requires, among other things 

the wit to comprehend complicated scientific problems, the patience 

to listen, the penetration to ask the right questions, and the wisdom 

to see what is, and what is not, important.   Box (1976) 

1.1   Context and scholarship of collaboration 

In this thesis I present a selection of papers published over the past 15 years that contain the 

results from four major studies where I was the principal or co-principal investigator. The 

overall focus of the studies was on the response of wildlife in south-eastern Australia to large-

scale landscape change. This work can be viewed as a comprehensive set of studies in statistical 

design and analysis in landscape ecology resulting in important contributions in areas of 

ecology and conservation science. All of the papers have been published and are essentially 

self-contained.  References are included for each chapter.  

The scholarship presented in this thesis lies in the nexus of creatively applied statistical 

science and methodology to the field of landscape ecology. The innovative use of statistical 

science involves adapting existing knowledge and methodologies and deploying ideas and 

methods for problem solving in new areas.  Emphasis is as much on scientific process as it is on 

biological outcomes.  

The core of the thesis is represented by a series of chapters, ordered broadly by statistical 

themes, covering a wide range of statistical practices arising from four major studies in 

landscape ecology.  Data characterised by complex structures and non-standard distributional 

properties are common in ecology. So, too, are somewhat vague initial objectives of researchers. 

This often makes it unclear how to proceed.  In many cases there is a disconnect between 

questions expressed in ecological terms and the data available to address the question. In these 

cases, it is the task of the statistician, in collaboration with the ecologist, to identify and resolve 

this issue. Significantly, this requires an ability to approach and comprehend ecological issues 

from a statistical perspective and the application of extensive statistical knowledge in making 

judgements about which assumptions can be compromised without affecting important 

inferences.  This requires an in-depth understanding of the context of a defined 

problem/question, formulating the problem in statistical terms, and subsequently building a 

plausible statistical model that is compatible with the data. 
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Often it is necessary to modify the question, given the data available, to develop hypotheses 

that can be expressed in statistical terms. It is necessary that applied statisticians understand the 

discipline within which they are collaborating in sufficient depth to facilitate effective 

outcomes. Confidence, and sometimes boldness and lateral thinking, are required to examine 

problems in new ways, or even to propose different questions to those originally posed.  This 

may involve contesting the statistical thinking of the ecologist. The key in bringing these 

creative elements to the fore is to develop a clear way of thinking about problems and data 

structures and ultimately to have the statistical knowledge and framework to solve them.  

Much ecological knowledge is dependent on the findings drawn from the statistical analysis 

of numerical data. Early collaboration with a statistical scientist at the commencement of a 

project maximises valid scientific outcomes by clarifying objectives, identifying sources of 

variability, and ensuring the collection of high quality data. Ongoing collaboration for the 

duration of the project by supervising and/or undertaking statistical analysis ultimately 

facilitates the communication of results in a clear way.  

My statistical knowledge in experimental design accumulated over a career as a statistical 

consultant has resulted in a major contribution to a range of studies including those reported in 

this thesis. Collaboration has involved making sound judgements about what important 

principles of design could be compromised and what needed to be adhered to rigorously and 

diligently. Practical constraints often challenge theoretical niceties.  Even the simplest design 

may require extensive thought and discussion as well as an ability to understand ecological 

issues from a statistical perspective. Without such expert statistical input, much new knowledge 

contained in the publications presented in this thesis would not have been acquired. 

The publications comprising this thesis are presented as individual chapters.  A common 

ecological theme for all papers is the response of fauna, mostly birds, to landscape change 

through plantation establishment or vegetation restoration activities in south-eastern Australia. 

These papers are published in ecological journals because the science related to ecology, not 

statistical methodology. However, many aspects of statistical thinking are contained in these 

manuscripts and therefore the chapters are ordered by statistical themes as follows:    

 The (statistical) design of large-scale quasi-experiments in landscape ecology

(Chapters 2, 3, 4, and 5, and Appendix A),

 Applications of generalised linear models (Chapters 6 and 7),

 Models for cross-sectional data with several random terms (Chapters 2 and 5, and

Appendix B),
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 Statistical models for longitudinal data (Chapters 8 and 9),

 Trend analysis using models and graphical methods (Chapters 10 and 11), and

 Modelling spatio-temporal data.  Partitioning relationships in multi-level data

(Chapters 5, 12, and 13).

 Figure 1.1 is a schematic diagram showing links between the publications presented in 

Chapters 2 to 13 and Appendices A and B and the scientific process of statistical design, 

statistical analysis, and area of biological research. The four major quasi-experiments in 

landscape ecology are shown in separate panels. 

Figure 1.1.  Schematic diagram mapping publications and the scientific process of statistical 

design, statistical analysis, and biological outcome. The four major quasi-experiments in 

landscape ecology are shown in separate panels. 
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1.2   The statistical design of experiments  

 

The development of experimental design is one of the great contributions 

of statistical science to science and technology. Yet, almost nobody knows 

anything about it!   Nelder (1999) 

 

Statistical science is concerned not only with informative methods of data analysis but also with 

improved design for observational studies, surveys, quasi-experiments, and experiments. The 

type and validity of any inferences that might result from an analysis of data depend very much 

on the method of data collection and quality of the data. No analysis or theory of statistical 

inference can compensate for fundamental flaws in design. Cox (1958) and Mead (1988) 

provide comprehensive accounts of statistical design of experiments, and Johnstone (1998) 

discusses some practical issues in planning and managing experiments. In the remainder of this 

section, I briefly discuss the main difference in types of experimental studies relevant to 

landscape ecology.   

 

Important differences between types of investigation discussed here are summarised in 

Figure 113.1, p. 435 in Remler and Van Ryzin (2014).  An adaptation of that diagram is 

provided in Figure 1.2. In the next section the major types of ecological empirical studies will 

be described, along with their strengths and weaknesses.  
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1.2.1   Observational studies 

The basis for observational studies is the observation and measurement of the 

ecosystem/process, and conclusions are determined on the basis of these observations. Variables 

are often easy to measure and are an intrinsic property of the units (i.e., endogenous, or internal 

to the ecosystem) rather than being assigned to them (i.e., exogenous, or originating outside the 

ecosystem). The main advantage of an observational study is that it does not interfere with the 

ecosystem under study. Its major disadvantage is that the inferential status of the results is weak 

in that the results cannot answer causal questions. It is often difficult to separate the effects of 

different variables and therefore to confidently associate a variable with a particular outcome. 

Explanatory variables are endogenous and are determined by processes that also influence the 

outcome, so it is often difficult to separate the specific effects of different variables. No method 

of analysis can overcome difficulties associated with confounding effects of unknown or 

unmeasured variables.  

1.2.2   True experiments 

An intentionally designed experiment represents an organised and planned inquiry conducted 

under at least partially controlled conditions. It involves artificially altering or manipulating the 

ecosystem in some way to force the system to yield information about the effects of variables 

that have been manipulated.  

Fisher (1925, 1935) was responsible for much of the development of experimental design, 

initially within the field of agricultural science.  In these situations, experimental treatments 

(interventions) were intentional and planned to answer specific questions and it was usually 

possible to control conditions.  The salient attributes of a true experiment include random 

assignment of treatments, external replication, control of variability, and the presence of a 

control treatment.   

Random assignment of treatments to experimental units is important, ensuring that observed 

responses are actually caused by the treatments themselves and not by the way in which they 

were allocated (i.e., treatments are therefore exogenous). Replication is necessary to establish 

the degree of reproducibility of responses to treatments and ensure that the investigation has 

internal validity.  Blocking, or grouping, of units that are similar in some respect allows for the 

control of possible sources of variability and so increases accuracy with which treatment 

comparisons can be made. 
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1.2.3   Natural experiments and quasi-experiments  

In landscape ecology, it is usually too expensive and not practically possible to implement 

random assignment of treatments, a key pillar of the orthodox “Fisherian” experiment. 

However, identifying natural ecosystems that have structural and comparative features 

analogous to designed experiments is a significant scientific endeavour. This is even more 

important when these systems provide unique opportunities to address current important 

questions.  True experiments are created, but natural and quasi-experiments are found; 

investigators need to be alert to them as they are not common in landscape ecology.  These 

“experiments” are often described as natural experiments or quasi-experiments. In landscape 

ecology, the term natural experiment has been used widely to mean both.  The term quasi-

experiment has often been used in a biological setting (Manly, 1992), whereas both terms have 

been discussed in ecology (see Krebs, 2013). 

Natural experiments typically take advantage of uncontrolled events. That is, an intervention 

has occurred because of some naturally occurring event and the researcher takes advantage of 

this. For example, with regard to events such as wildfire, selection of experimental units is 

typically restricted to one or two large contiguous areas and so there can be no replication of 

experimental units and hence no random selection. This means that for natural experiments, the 

intervention effect may be confounded with other factors and so the design may not be 

internally valid.  Further, pseudo-replicates will not be statistically independent and so the 

design does not provide a valid estimate of experimental error.     

 In a quasi-experiment within a natural context, the management treatment such as tree 

planting is compared with one or more existing control areas but there can be little or no random 

assignment of areas to interventions (treatments) as they already exist.   In these situations, 

random selection may have to be a substitute for random assignment.  However, a formal 

process of random selection is essential as is effective, spatial replication. Thus, quasi- 

experiments lack random assignment but this deficiency can be partly compensated for by 

extensive replication and random selection; natural experiments lack both random 

selection/assignment and replication.  

The term quasi-experiment was first coined by Campbell and Stanley (1966) and is used 

widely in many contexts, particularly the social sciences. Shadish, Cook, and Campbell (2002) 

use the term quasi-experiment to describe an “experiment that lacks random assignment but 

otherwise possesses many of the structural features and purposes of a randomized experiment”.  

This is essentially the definition adopted in this thesis.  
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Although the inferential status of results of quasi-experiments is weaker than a “true” 

experiment (i.e., quasi-experiments cannot establish causality in the way that a true experiment 

can) they are attractive in landscape ecology because they have fewer practical constraints and 

often fewer ethical constraints.  Furthermore, they can be conducted in a realistic way and on a 

larger scale in a natural setting, and so often provide a wider general inferential framework than 

can a true experiment.  Apart from this important and fundamental distinction, quasi-

experiments have truly comparable experimental features, including controls, and share many 

other important design and data structural attributes of a true experiment.  Importantly, quasi-

experiments usually have both internal and external validity.  That is, the design provides 

appropriate data to allow valid estimates of experimental error with adequate precision, a basic 

requirement for inference. Some shortcomings of quasi-experiments may, in part, be 

compensated for by clever adaptation on a large-scale.  

 Below is a brief summary of the range of major statistical questions and issues that were 

considered in developing designs for the quasi-experiments discussed in this thesis.   

 Can we recognise a natural system in a landscape suitable for experiments/studies and

do we have the ability and resources to seize the opportunity to study the system

(ecological serendipity)?

 Does a relevant landscape/area offer a natural set of interventions (ecological

contrasts)?

 What are the relevant and interesting questions? Are the proposed treatments

exogenous?

 Are there distinct natural spatial units and are there identifiable units at multiple

(nested) levels?

 Which spatial units are relevant for inferences about interventions?

 What is the extent of the framework for inference (scope of inductive basis) and does

the scope of the investigation reflect inherent complexity of the landscape?

 How many observational units are required?  (Observational units are usually relevant

to measurement whereas experimental units are relevant to inference about

interventions.)

 Are there sufficient existing data and relevant parameters for the statistical power of the

study to be formally calculated?

 Is blocking/pairing possible?

 Is it possible to identify stratifying variables that might account for identifiable

heterogeneity, e.g., vegetation cover, agricultural practice?

 Are there measurable, potentially useful covariates?
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 Is the design internally valid, so that replicates of treatments are statistically 

independent? 

 Does the design provide precise/efficient estimates of experimental error at all relevant 

levels?  

 Do researchers understand consequences of too many or too few replicates at each of 

the multiple levels of the ‘experiment’? Size is important, but at the appropriate level! 

   How many plots/transects?  

 How can occupancy or abundance be measured most effectively?  How many 

observations are needed to measure the response to be confident of true absence? Can 

detection issues be dealt with appropriately?  

 How important is lack of random assignment? Do approaches need to be developed for 

true random selection, e.g., define and enumerate a population of (stratified) units?  

Random selection can often be compromised by practical logistics in these studies.  

 Has sufficient thought been given about the resultant data structure, formulating a 

statistical model for analysis, and implications for data analysis?  

 

1.3   The design of four large-scale quasi-experiments in landscape ecology  

 

Design sadly lags far behind analysis in the perception of most statisticians, 

and yet, as I remarked at the 1988 Biometrics Conference, Design is 7.6 

times as important as Analysis. (For a few conferences this became an in-

joke and I was asked was it still 7.6? The answer, of course, was that the 

importance ratio varied, getting as high as 8.3, and as low as 6.4).  Mead 

(2014) on receiving the honorary life membership to the Biometrics Society 

 

 

In Chapters 2, 3, 4, and 5, and Appendix A, I describe in detail the design of major comparative 

quasi-experiments in landscape ecology. Furthermore, with the exception of Chapter 10, all 

chapters in this thesis contain results of research-based on quasi-experiments. 

 

1.3.1   The Tumut fragmentation study:  Chapters 2 and 3 
 

The main Tumut study (Chapter 3) was designed to measure the effects of vegetation context 

and habitat fragmentation on forest birds. Initially a pilot study was designed to quantify 

observer heterogeneity and to compare observation methods for the detectability of forest birds 

in stands of Eucalyptus and Pinus radiata forest as a basis for a major research project about 

habitat fragmentation near Tumut, southern New South Wales (Chapter 3). 
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In the resulting paper (Chapter 2) we quantified observer heterogeneity in bird counts for the 

first time. Here observer difference is regarded as contributing to variance rather than being 

regarded in terms of bias. An important outcome revealed that observer heterogeneity can be 

compensated for by simply having two “random” observers survey each site, essentially dealing 

with one kind of measurement error in bird data.  This was a necessary step in defining an 

effective bird data collection protocol prior to undertaking the major study. This approach was 

later confirmed by other researchers, but adopting the additional proviso that separate observers 

visit on different days to allow for different weather conditions. The above approach has been 

adopted as a standard protocol for all the bird surveys conducted in the studies reported in the 

chapters of this thesis.  

 

The study region consisted of a forest mosaic characterised by different landscape contexts: 

large, continuous areas of native Eucalyptus forest, extensive stands of exotic softwood (radiata 

pine, Pinus radiata) plantation, and remnant patches of native Eucalyptus forest scattered 

throughout the extensive areas of radiata pine plantation. There were a number of statistical 

design considerations for this quasi-experiment:  

 

 Counting protocols and stratifying variables were determined by conducting a pilot study. 

 Stratification ensured the full environmental space of the area was represented.  

 Experimental units were chosen to be of fixed size, namely 3 ha.  Treatments were defined 

by the surrounding vegetation context (remnant patches, remnant strips, pine within pine, 

and native forest within native forest).  

 Where possible, replication was included for each stratum. 

 All potential remnants were enumerated and cross classified by key stratifying factors. 

 Random selection within each stratum (that is a cell in a multi-way table) was applied to 

minimise the chance of bias and to average over random factors (both identifiable and non-

identifiable). 

 Attributes of sites, such as vegetation type, in native eucalypt forest were matched to those 

of remnants.  

 The number of replicate observations was chosen to be independent of remnant size, which 

seems appropriate for such a comparative “experiment” (this may not be an appropriate 

decision in non-comparative studies).  

 Sites (strip transects) were chosen from a random start point on the edge of each remnant 

and were directed toward the centre. 

 Sites were chosen to be at least 1 km apart to minimise statistical complications that may 

arise due to spatial dependence. This choice was supported by evidence.  

 Where possible, sites in native eucalypt and pine were chosen in non-contiguous areas. 
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1.3.2   The Nanangroe prospective study:  Chapter 4 

This quasi-experiment (incorrectly described as a natural experiment in the original paper) was 

designed to allow the direct study of changes in fauna, particularly birds, inhabiting woodland 

fragments as the surrounding grazed landscape was transformed into a radiata pine (Pinus 

radiata) plantation. It also provided data to enable the study of relationships between fauna and 

habitat and landscape variables, both over time and between sites.  

This quasi-experiment has features similar to the study described in Chapter 3.  One 

fundamental difference is that the Nanangroe experiment was set up as a prospective 

longitudinal study. Here the focus was not so much on cross-sectional differences at one point 

in time but on changes taking place over time.  Studies of this nature can clearly distinguish 

changes over time from differences between sites; each site becomes its own control and so 

provides a powerful opportunity for assessing direct effects that are not obscured by cross 

sectional differences. 

1.3.3   The south-west slopes (NSW) vegetation restoration study:  Chapter 5 

The study presented in Chapter 5 was a nested quasi-experiment that was designed to assess the 

effectiveness of restoration plantings in agricultural landscapes with varying amounts and types 

of native vegetation on the south-west slopes of NSW.  The main objective was to assess the 

comparative value of plantings and remnant native vegetation for biodiversity to determine 

whether plantings and other existing vegetation forms were interchangeable for reptiles and 

arboreal marsupials. 

A detailed account of the design is provided in Chapter 5. The study design benefited from 

the recognition of a natural system that could be considered as spatially clustered by the existing  

configuration of different forms of vegetation cover, different farm practices, and broader scale 

landscape attributes such as geology, geomorphology, and climate. 

Landscapes were selected within two regions such that each belonged to one of six possible 

combinations of remnant vegetation and planting cover categories (e.g., low remnant vegetation 

cover and low planting intensity). Twenty-three landscapes were chosen for study: four 

landscapes in each of the six categories, with one exception where the category had only three 

replicates. Two farms in each of the 23 landscapes (46 farms in total) were selected. In 

landscapes with plantings, one farm with plantings and another without plantings were chosen. 

On each farm, four to six sites were designated for study, where possible one site in each of the 

four patch types (planting, seedling regrowth, coppiced regrowth, and old growth) was 
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identified on each farm.  The final design included 64 plantings, 72 old growth patches, and 66 

regrowth patches.  

 

Thus, the hierarchical design was replicated in two regions where four sites were nested in 

farms and two farms were nested within 23 landscapes.  The design facilitated the estimation of 

components of variance at each level and these statistics provided insight into spatial 

dependence patterns or multiple spatial scale effects that influenced biodiversity.   

 

1.3.4   The Mulligans Flat / Goorooyarroo dual experiment (ACT): Appendix A 

 

Appendix A contains an account of dual large-scale quasi-experiments on adjacent reserves on 

the edge of the ACT urban area. These experiments possess most of the attributes of a true 

experiment and can be regarded as showcase experiments in landscape ecology. They provide a 

strong inferential framework for tracking the effects of restoration treatments on woodland 

biodiversity. In order to reintroduce bettongs, a locally extinct species, a 16-km-long fence was 

erected to establish an area from which feral animals were excluded. This provides opportunities 

to research the role of ecosystem engineers in woodland restoration and it has become a long-

term research site for ecological restoration research and community and student learning (an 

outdoor laboratory). 

 

One experiment was established within the area bounded by the fence, which was erected 

shortly after the project was commenced; the other experiment was established in the adjacent 

unfenced area (Goorooryarroo reserve).  In each experiment, three vegetation types were 

identified. These types were based on the height of the tree layer and the height of the shrub 

layer. Each vegetation type area, referred to as a polygon, was mapped and 12 polygons were 

selected for each experiment. Polygons having the same vegetation type were paired. In each 

polygon, four sites were established. The individual sites were 200 m × 50 m.  Each site in a 

pair of polygons was assigned one of eight restoration treatments (a 2×2×2 factorial 

arrangement) so that each pair possessed the full set of eight treatments.  For three of the pairs, 

the three-factor interaction was confounded with differences between polygons within the pair, 

and in each of the other three pairs, one of the two-factor interactions was confounded with 

polygon differences.  

 

One treatment involved the addition or non-addition (absence) of 20 tonnes of logs dispersed 

evenly over the site. The second treatment was similar except that the logs were placed in 

clumps. Therefore, a quarter of the sites received no logs, a quarter received a total of 40 tonnes 

of logs, and the others had 20 tonnes either dispersed or clumped. The third treatment was to be 

whether the site was burned or not. 
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A kangaroo exclusion treatment was applied at the polygon level. The success of the feral 

animal-proof fence made it possible to reintroduce bettongs which were once common in the 

local area to one of the experiments. In the early years of the experiment, weather and fuel 

conditions prevented the application of the fire treatment, so absence of the fire treatment meant 

that it could be replaced with a bettong-exclusion treatment. However, the cost of exclusion 

fences restricted treatment application to 12 sites rather than 24. One site was chosen to be 

fenced at random from each polygon pair, subject to the constraint that there would be three 

sites chosen for each of the four combinations of the clumped and dispersed log treatments. 

1.4   Statistical modelling:  A unifying, flexible approach for data analysis 

1.4.1   General 

In the case of true experiments, random assignment can provide a theoretical basis for inference. 

This involves conceptualising populations generated by hypothetical replications that are then 

represented by reference distributions (see Box, Hunter, & Hunter, 1978). In quasi- 

experiments, we do not have the benefit of random assignment and so typically we use 

statistical modelling to provide the basis for inference. Covariance adjustment then assumes 

greater importance in analysing quasi-experimental data in an attempt to adjust for potential 

lack of comparability between treatment groups.  

This thesis is primarily concerned with substantive ecological questions arising from the 

study of inter-relationships between response variables measuring aspects of faunal biodiversity 

and explanatory variables relating to environments undergoing change. Statistical models of 

these relationships provide powerful and flexible frameworks for dealing with a diverse range of 

designs and data types, analysing complex data structures, and making inferences from data 

about the substantive questions.   

A statistical model involves identifying and specifying the nature of inherent systematic 

variation (the pattern in the data) and also providing a representation of the unexplained or 

random variation. In its basic form, it presents a mathematical expression of the relationship 

between a response variable and an unknown linear combination of explanatory variables, 

including design variables, and specifies a distribution representing the random component. The 

simple regression model is an expression of a linear relationship between the mean of the 

response and potential explanatory variables with a Gaussian distribution to represent the 

random component. This model can be extended in many ways, such as specifying alternative 

distributions for the response, dealing with nonlinearity, adding additional random terms, and 

adding complexity to the types of variance structures associated with random terms. In short, a 

model is formulated to be compatible with distributional and structural properties of the data.  



14          1  /  INTRODUCTION 

 

 
Most importantly, the choice of the model depends on the overall objective of the study and, in 

particular, the specific research questions. The process of modelling is iterative because a single 

pass through these steps is seldom sufficient to expose the salient features of the data.  A sound 

training in statistical theory, combined with extensive applied experience, provided the basis for 

enabling original research contributions through: 

   

 identifying the inferential framework of the study, 

 proposing a plausible model for the distribution of the data and for relationships within 

the data, 

 choosing the right general form of the model to fit (Are data structured by the sample or 

experimental design?),  

 determining which relationships are likely to be additive and linear, 

 identifying aspects of the variance and covariance structure that will seriously affect the 

analysis, 

 determining what distributional assumptions are reasonable, 

 identifying likely computational issues, 

 observing outliers or anomalous observations that need to be formally downweighted or 

judiciously adjusted. 

 determining the feasibility of simplifying the model by reducing the number of 

parameters, 

 considering the cost of compromising explanatory power for the sake of simplicity, and 

 expressing the limitations that apply to the interpretation and application of the data. 

 

The above issues must often be incorporated in the many types of model used for statistically 

assessing variables that affect the presence, occurrence, and abundance of particular species of 

animals and plants. In the following section, I discuss the nature of the thinking behind 

statistical approaches taken in each chapter. Mathematical detail of the models presented in that 

section can be found in relevant statistical texts.  

 

1.4.2   Models with a single random term – Generalised linear model (GLM):  Chapters 4, 

  6, and 7  

 

Linear logistic regression was used to explore relationships between the occurrence of selected 

faunal responses in the four different landscape context classes and woodland attributes of 

baseline data presented in Chapter 4.  

 

The statistical analysis presented in Chapter 6 involved the examination of the statistical 

properties of birdcall data and the quantification of relationships between the number of bird 
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calls and bird abundance. The issue was whether the number of calls could serve as a useful 

surrogate measure for bird abundance. These vocal activity data exhibited nonadditivity, 

heterogeneity, and skewness.  An innovative and elegant solution was found by using a model 

where the random variation could be approximated by a gamma distribution and the 

relationships were multiplicative rather than additive. The model is a special case within the 

general framework of generalised linear models (GLMs).  

 

The call data were modelled as independent gamma random variables with densities that 

have the same shape parameter and an expectation, E [number of calls], that is related to bird 

numbers in a multiplicative way. That is: 

 

 Log(E [number of calls])  =  linear function of log(number of birds). 

 

This GLM model combines a log link with gamma distributions. The value of the regression 

estimate for the log (number of birds) variable measures the departure from direct 

proportionality and hence indicates whether researchers should be thinking in terms of call rates. 

A weak (or no) relationship between log (E[number of calls]) and log (bird abundance) 

translates into a negative relationship between call rate and abundance—i.e., as bird abundance 

increases, the number of calls per bird (call rate) decreases.  

 

Model-checking diagnostics showed that transformation of the response tended to 

overcorrect for the heterogeneity in the raw counts, so the initial approach of transforming data 

before modelling did not result in the best solution.  

 

In Chapter 7, I present an approach that deals effectively with two levels of high 

dimensionality—many bird species and many farm vegetation attributes—using logistic linear 

regression. By using a multivariate approach, several composite indices were defined based on 

eight vegetation attributes recorded on 46 farms. Linear logistic regression of relationships 

between bird occupancy and the derived indices facilitated cross-classification of 124 bird 

species based on the significance of their response to both the native-vegetation and planting-

presence indices.   

 

The results of Chapter 7 quantify the importance of tree-planting programs relative to 

existing remnant native–vegetation (scattered trees, native pastures, and woodland remnant 

cover) for bird conservation on farming properties in south-eastern Australia. 
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1.4.3   Linear mixed models:  Chapters 2, 3, and 5, and Appendix B 
 

Lack of understanding of differences in the structure of data has widespread 

consequences. ... It can lead to inappropriate models for the analysis being 

considered. ...  If models were introduced from the beginning by matching them 

with compatible data structures, much of this misuse would be avoided.  Nelder  

(1986) 

 

 As discussed in Section 2.5.1 and Chapter 2, a variance component analysis by fitting a 

linear mixed model was undertaken to estimate inter-observer variability in forest bird counts.   

 

Following dimension reduction by correspondence analysis, species richness and bird 

frequency profile scores were analysed by general linear mixed modelling to assess the effects 

of landscape context, year, and other covariates while including extra variance terms for sites 

and observers (Chapter 3).  

 

The nested design outlined in Chapter 5 incorporated three levels of experimental units:  

landscape, farms within landscapes, and sites within farms within landscapes. It is important to 

recognise that sites within the same farm share common cultural farming practices that make 

conditions and observations more homogeneous than are those from a random sample of sites 

drawn from a random sample across the landscape.  Farms within a landscape also share 

common geographic attributes.  These features of the design determine the inherent dependence 

structure of the data which must be specified and accounted for in any proposed statistical 

model, at least in the first instance.  This is expediently achieved by including combinations of 

both landscape and farm as random effects in the model.   

 

Variance components quantify the contribution of random variation at each level of the 

design not accounted for by the fixed factors. As a result, they contribute to the total variability 

at each level of the design, providing insight into scale effects (i.e., ecological processes that are 

operating at these levels). The general framework for such models is the general linear mixed 

model and, in the case of non-Gaussian data, the generalised linear mixed model.   

 

A second example of generalised linear mixed modelling is provided in Appendix B. Here 

binary data were considered to be a single realisation of the probability of site occupancy 

subject to measurement error after pooling data counts across the four survey points at a given 

site and also pooling data across observers and days.  Consequently, the response is regarded as 

the probability of occupancy, conditional on a constant high detection probability.  Survey 
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number (i.e., season: two levels), planting type treatment (four levels: intersection, block 

planting, isolated linear strip, internal control), and their interaction were fixed factors. As the 

area surveyed differed between planting types, it was considered to be a covariate in the 

analysis. Farm (statistical blocks) was specified as a random term. 

 

1.4.4   Modelling longitudinal data:  Chapters 8 and 9 

 

Chapter 8 contains a second paper using bird vocalisation data quantifying temporal patterns of 

morning calls (termed “call profiles”) for a range of species and exploring how these differ 

between landscape contexts, forest types, and seasons.  

 

Examination of the variation in responses relating to landscape context, season, position, 

period, and other covariates was achieved by fitting an appropriate linear mixed model to these 

data.  The general linear mixed model approach involving the transformation of data (cube root) 

addressed the complicated dependence structure in the call data that was lacking in the 

previously discussed study of relationships between number of calls and bird abundance.  

 

Given the strength of the relationships between morning call temporal profiles for a range of 

species and vegetation types and season, the cube root transformation seemed satisfactory for 

additivity, resolved the heterogeneity of variance problem, and was consistent with the gamma 

model described in Chapter 6 (see Wilson & Hilferty, 1931). 

 

The inclusion of random terms for each level of the design accounted for possible 

dependence between observations within sites.  It was likely that observations between periods 

would be serially dependent and that the extent of this correlation would depend on the number 

of minutes separating observations, even after accounting for systematic differences between 

time points. An unstructured correlation matrix was found to be better than the common 

exponential correlation model for accounting for the serial dependence between observations 

within sites. 

 

We concluded that sound recorders provide valuable intrasite data for studying patterns in 

the longitudinal vocalisation profiles.  

 

In the paper presented in Chapter 9, mixed linear logistic regression was used to quantify 

and classify temporal profiles of bird and mammal occupancy of woodland patches undergoing 

major change due to the establishment of surrounding pine plantations. Occupancy rates were 
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modelled as a function of time, treatments, and time by treatment interaction while 

appropriately accounting for possible dependence, including random terms.   

 

It was determined that bird taxa commonly associated with forests benefited from the 

emerging pine plantation and, conversely, woodland and open country birds were 

disadvantaged.  

 

1.4.5   Trend analysis using models and graphical methods:  Chapters 10 and 11 
 

The paper presented in Chapter 10 contains statistical methodology developed for use with 

binary data to examine long-term change in bird occupancy data using, as an example, records 

from a major bioregion of eastern Australia, 1999–2007. Regression splines, which offer a 

flexible way of capturing and highlighting nonlinear, temporal patterns in data, were 

successfully used to model long-term temporal trends in grouped binary data within a 

generalised linear modelling framework. Confidence intervals based on bootstrap resampling 

(500 replicated) of sites provided a basis for assessing the significance of change, and a method 

was incorporated for identifying important change points in the trajectory from the second 

derivatives of the curve.  It is important that bootstrap resampling of non-independent, repeat-

measures data must be applied at an appropriate level in structured data, in this case the site 

level.  The method naturally facilitates graphical display which is readily interpretable to the 

reader. Since publication, the method has been widely used and is currently the basis for 

developing an Australian bird index to obtain an holistic picture of the health of the Australian 

bird population.  Results have been included in the recent State of Australia's Birds: Headline 

Trends for Terrestrial Birds (O'Connor, Ehmke, & Cunningham, 2015). 

 

A second paper under this theme (Chapter 11) contains the results of an analysis of 76 bird 

species collected over 10 years in 66 patches of woodland in south-eastern Australia using an 

adaptation of the above methodology. 

 

1.4.6  Modelling spatio-temporal data – Insights into spatial scale effects:  Chapters 12  

 and 13   

 
Habitats vary at multiple spatial scales and with time, so it is reasonable to expect that 

organisms and processes occurring in the habitats also would exhibit variation at multiple 

scales. The south-west slopes (NSW) restoration quasi-experiment described in Chapter 5 was, 

among other things, specifically designed to provide insights into spatial scale effects.  

 

The two papers presented in Chapters 12 and 13 provide a strong empirical basis for 

quantification of spatial scale and temporal effects as well as their statistical significance. The 

https://www.researchgate.net/publication/280533576_State_of_Australia%27s_Birds_2015_Headline_Trends_for_Terrestrial_Birds
https://www.researchgate.net/publication/280533576_State_of_Australia%27s_Birds_2015_Headline_Trends_for_Terrestrial_Birds
https://www.researchgate.net/researcher/2048728056_James_OConnor
https://www.researchgate.net/researcher/2048735409_Glenn_Ehmke
https://www.researchgate.net/researcher/2078720961_Ross_Cunningham
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first paper describes relationships between species richness and vegetation cover at several 

scales. The second paper focuses on comparisons between cross-sectional and temporal or direct 

relationships for 24 species at three spatial scales. In both papers it was recognised that our 

response variable, species richness, and the primary explanatory variable, percent cover, were 

extensive variables—i.e., when aggregated they have compatible and meaningful interpretations 

at all spatial levels.  This insight allows reduction of structural complexity by modelling 

richness separately at the three scales of the data, thereby simplifying the specification and 

fitting of the statistical model.  

 

At the landscape scale, the response variable, species richness, varied at three levels:  

between-landscapes, between-year, and between-year within-landscape. The candidate 

explanatory variables representing vegetation cover (primarily the log of % vegetation covers) 

also varied at these levels.  It was recognised in the statistical analysis that repeat observations 

of bird species richness within a landscape might be more homogeneous than were observations 

between landscapes. That is, some degree of within-landscape correlation would be expected.  

The proposed statistical model reflected the sampling design. Therefore the above dependence 

structure was specified and accounted for.  “Landscape” was thus regarded as a random effect in 

the linear mixed model.  For similar reasons, year was included as a random effect. The 

negative consequences for inference of ignoring dependence are usually greater than is violating 

other assumptions.  

 

The above model fits within the framework of general linear mixed models. Restricted 

maximum likelihood was used to estimate variance components, and weighted least squares was 

used for estimating fixed effects. Statistical significance of effects was assessed by calculating 

adjusted Wald statistics. Extrinsic weights were based on the standard errors of the predicted 

values of species richness in 2002 and 2010 obtained from the previous analyses. General model 

checking procedures were used to identify aberrant data and to check model assumptions. 

 

A special feature of longitudinal data is that inferences pertaining to regression relationships 

at different levels can be segregated. For example, the within-landscape regression coefficient 

can be estimated by comparing individual responses at two points in time (2002 and 2010) 

assuming the explanatory variable also changes with time. This eliminates the effect of 

unmeasured geographic and environmental characteristics that vary across the target population 

and that may obscure the estimation of direct effects between bird responses and vegetation 

cover. That is, their influence is removed in the estimation of the within-landscape relationships. 
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1.5   Scientific contributions to ecological knowledge and conservation of wildlife 
 

I have made significant contributions to understanding terrestrial ecosystems in south-eastern 

Australia through statistical design, the development of statistical models, and effective 

collaboration with ecologists.  Significantly, these contributions have contributed across several 

biological research areas that are outlined in the following sections.  

 

1.5.1   The design of large-scale quasi-experiments in landscape ecology:  Chapters 2, 3, 4,  

  and 5, and Appendix A 

 

The process of design often involves extensive collaboration between statisticians and 

ecologists. As previously mentioned, a lengthy iterative process is required where ecological 

questions and different designs are considered.    

 

1.5.2   Forest ecology:  Chapters 3 and 9 

 

In Chapter 3 there was a focus on comparing bird responses between remnant patch types after 

many years of forest fragmentation.  The findings indicated that irrespective of size and shape, 

all fragments have significant conservation value.  In addition, smaller birds with smaller 

clutches using cup nests or burrows were more likely to occupy patch-shaped remnants than 

other woodland fragments types.  

 

In the paper presented in Chapter 9, the effects of plantation development on changes in 

woodland bird biodiversity were examined. The findings indicated that bird species associated 

with open country and woodland environments were disadvantaged by emerging pine 

plantations, whereas those benefiting included forest taxa and/or habitat generalists capable of 

inhabiting pine stands and adjacent woodland patches. Additionally, some of the main attributes 

of retained woodland patches associated with temporal changes in bird occupancy included the 

number of boundaries with surrounding pines, the size of woodland patches, and the dominant 

vegetation type of woodland patches. 

 

1.5.3   Wildlife biology:  Chapters 6 and 8 

 

The simultaneous calling of many bird species around sunrise, commonly referred to as the 

dawn chorus, is a major feature of bird communities in many environments ranging from deserts 

to tropical rainforests.  In the papers presented in Chapters 6 and 8, we addressed the general 

question whether data obtained by birdcall recorders provide useful behavioural and ecological 

information such as call rates (number of calls per bird).  
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Subsequent analysis suggested that these data provide limited but useful information about 

vocal activity per bird. Automatic sound-recording data may be informative for drawing 

inferences about temporal patterns in vocal activity but do not seem to be useful as a method for 

estimating the abundance of birds. For most groups of birds, the observed relationships between 

the number of calls recorded by sound recorders and the total number of birds detected by 

human point counts were found to be statistically significant but weak. For data aggregated over 

groups of sites, there was evidence of direct proportionality between the number of notes and 

the abundance of birds. This was not the case for site level data.  For measuring biodiversity, the 

relationship between the number of species vocalising and the number detected was not directly 

proportional but was nevertheless highly significant. There were many more species detected by 

sound recorders than there were by human observers.  

 

After an initial early peak of activity, there was a significant, roughly linear, decline in vocal 

activity across the morning. Vocal activity persisted longer at sites located within large areas of 

continuous eucalypt forest than in the strip- and patch-shaped eucalypt remnants surrounded by 

extensive stands of radiata pine or at sites dominated by stands of radiata pine. There was 

evidence that the pattern of persistence of vocal activity differed between the different bird 

groups. 

 

1.5.4   Restoration ecology:  Chapters 5 and 7, and Appendix B  

 

In this section, I examine different aspects of the effectiveness of revegetation on biodiversity 

in agricultural landscapes.  Reptiles and arboreal marsupials were shown to be less likely to 

occur on farms and in landscapes with comparatively large areas of plantings (Chapter 5). It was 

clear that although plantings may improve habitat conditions for some taxa, they may not 

effectively offset the negative impact of native vegetation clearing for all species, especially 

those reliant on old-growth woodland. Restoring suitable habitat for such species may take 

decades or even centuries. 

 

Chapter 7 contains results revealing that farms with high value remnant native vegetation 

were those most likely to support declining or vulnerable bird species, although some individual 

species of conservation concern occurred on farms with large plantings. Consequently, farm 

management for improved bird conservation should account for the cumulative and 

complementary contributions of many components of remnant native vegetation cover (e.g., 

scattered paddock trees and fallen timber) as well as areas of restored native vegetation. 

 

Results presented in Appendix B suggest that replanting programs aimed at maximising bird 

species richness may benefit from consideration of planting geometry. In particular, linking 
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strip plantings to create intersections and/or establishing block plantings appears to be superior 

to isolated strips for aggregate species richness. Evidence was found of extra variation at the 

farm level for species richness and derived assemblage scores, suggesting a farm-scale response. 

This suggests the importance of other, often unmeasured, variables (e.g., baiting for feral 

animals) at the farm level.  

 

1.5.5   Conservation science:  Chapters 10 and 11 
 

The science of monitoring changes in biodiversity is fundamental in biological conservation. 

Tracking change is essential to guide sustainable management. The statistical methodology 

presented in Chapter 10 offers a flexible and practical way to assess long-term change in 

situations where abundance data are scarce and difficult to gather on a sufficient scale.  The 

resulting analyses demonstrated the usefulness of presence–absence, volunteer-collected data 

for tracking change in bird populations.  A most important outcome repeated in many data sets 

analysed so far was that anecdotal observation can lead to misleading conclusions. 

 

A second paper under this theme, presented in Chapter 11, contains results from an analysis 

of 76 bird species collected over 10 years in 66 patches of woodland in south-eastern Australia, 

using an adaptation of the methodology outlined in Chapter 10. The results provide a more 

positive outlook than do some more recent published findings from other regions and the 

general view based on anecdotal reports.  Declines or increases are very species-specific, rather 

than related to groups defined by life history traits or other attributes.  Application of the 

method on many data sets again suggests that anecdotal reports can easily result in misleading 

conclusions about long-term trends. Furthermore, a notable feature of bird data is the presence 

of large inter-annual variation. This suggests that to determine long-term systematic changes in 

bird populations, long-term data sets (e.g., >15 years) are required.  

 

1.5.6   Landscape scale effects for several measures of biodiversity and the role of  

 vegetation cover in explaining these patterns:  Chapters12 and 13 
 

The paper presented in Chapter 12 provides an empirical approach to the estimation of scale 

effects as well as their statistical significance. The second paper, in Chapter 13, is more focused 

on comparisons between cross-sectional and temporal or direct relationships between scale 

effects on individual bird species.  

 

Species-specific, scale-dependent responses to vegetation cover are identified by taking a 

multi-scaled approach. These findings are of considerable practical importance for gaining 

insights into which species respond to different scales of protection in existing areas of native 
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vegetation, efforts to increase the amount of native vegetation over time, and both approaches 

together. 

 

Variation in bird biodiversity at landscape, farm, and site scales exhibited significant 

intrinsic scale-specific effects. This dependence was largely accounted for by native vegetation 

cover with aggregate biodiversity increasing with increasing native vegetation cover at each 

spatial scale and over time. Absolute gains in biodiversity per unit increase in vegetation cover 

were greatest at relatively low amounts of vegetation cover.  Every doubling of percent cover 

resulted in an increase of 3.1, 2.3, and 0.7 species per landscape, farm, and site respectively. 

These results can help prioritise investment strategies such as replanting native vegetation under 

agri-environment schemes. 

 

Cross-sectional relationships were identified with the amount of vegetation cover. These 

were typically positive for woodland birds and negative for open-country birds. However, for 

some species the relationships differed between spatial scales, suggesting differences in nesting 

and foraging requirements. There was a 3.5% increase in the amount of native vegetation cover 

in the study region between 2002 and 2010, and analyses revealed that some open-country 

species responded negatively to these temporal changes, typically at the farm and/or site scale, 

but not the landscape scale. Species generally exhibited stronger cross-sectional relationships 

between occupancy and the amount of vegetation cover than between changes in occupancy and 

changes in vegetation cover. This unexpected result could be attributed to differences in habitat 

use by birds of existing vegetation cover (typically old growth woodland) versus plantings and 

natural regeneration, the main contributors to temporal increases in vegetation cover.  

 

1.6   Summary  
 

The scientific outcomes arising through my contributions to innovative design and diligent 

statistical modelling of four major studies has resulted in significant advances in new 

knowledge in landscape ecology. The importance of creative design is highlighted as is the need 

for careful model formulation and fitting, diagnostic model checking, and the use of covariates 

to compensate for compromises in design that are unavoidable in landscape ecology.   

 

The published papers presented in this thesis have provided many new and unique insights in a 

number of important areas of ecology and conservation science.  Among these, the main ones 

are: 

1.  new understandings about the impact of landscape change and habitat 

transformation on biodiversity;  
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2.  new insights into how populations of animals (particularly birds) change over time, 

and the nature of this change; and  

3.  new insights into the effectiveness of management actions, including the 

effectiveness of replanting native vegetation and other active woodland restoration 

projects at particular spatial scales. 
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INTRODUCTION

A substantial literature shows that counts of birds 
can vary considerably as a result of the observation
methods employed (e.g. Loyn 1980; Recher 1984,
1988; Ralph et al. 1997) as well as variations in the area
and/or time searched using a given method (Er et al.
1995). It is also well known that counts of birds can
be strongly affected by levels of observer skill (e.g.
Morin & Conant 1994; van der Meer & Camphuysen
1996). For example, sea-bird surveys in the North Sea
that did and did not account for observer effects
resulted in estimated population sizes of fulmars
(Fulmarus glacialis) of 3.5 million and 1.8 million,
respectively (van der Meer & Camphuysen 1996).
Failure to quantify and incorporate observer effects 
can lead to controversy over the interpretation of data
gathered by multiple observers (Link & Saur 1997 cf.
McCulloch et al. 1997) and potentially important find-
ings can be masked by increased variance. This can
limit the value of such data (Link & Sauer 1997). For
example, ignoring observer effects may lead to ques-
tionable conclusions about the magnitude of changes

in populations of birds (James et al. 1996; Link & Sauer
1997) resulting in poor management decisions and 
the inappropriate allocation of scarce conservation
resources.

In studies where multiple observers are required, it
is often not possible to account for observer differences
by statistical modelling. This introduces an additional
source of variability into observations. It follows that
knowledge of the magnitude of observer effects is
important. It provides a basis for designing field 
studies so that a reduction in error, and hence an
increase in power, can be achieved. Indeed, such work
may become increasingly important as contributions
from multiple observers (e.g. various atlases of distribu-
tion records: Blakers et al. 1984; Saunders & Ingram
1995) are being used more frequently in assessing
large-scale effects and long-term trends in bird popu-
lations (e.g. James et al. 1996).

Relatively few Australian studies have attempted to
quantify the magnitude of observer effects (but see
Kavanagh & Recher 1983; Pyke & Recher 1985). In
this study we present the findings of a field-based
experiment designed to quantify observer effects on
bird counts in native eucalypt and exotic softwood
forests of southeastern Australia. Rather than examine
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particular species, our focus is on broad groups of 
birds that share similar attributes relating to detect-
ability (e.g. size, colour and voice characteristics).
Thus, we identify those groups for which observer 
heterogeneity is important and the extent of such
effects. In addition, we contrast counts using different
observation methods [point interval count (sensu Pyke
& Recher 1983), zig-zag walk and straight transect] in
stands of Eucalyptus and Pinus radiata forest. Some
implications of our findings for bird surveys are briefly
discussed.

METHODS

Study area

The field experiment was completed in late October
1996 in the Buccleuch State Forest near Tumut, 
southern New South Wales (148°409E, 35°109S).
Twelve sites were selected; six in a radiata pine (Pinus
radiata) plantation and six in Eucalyptus forest domi-
nated by 30–40 m tall manna gum (Eucalyptus vimi-
nalis) and narrow-leaved peppermint (Eucalyptus
radiata). The areas of eucalypt forest were typically a
mixture of large old trees and younger (30–50 years old)
regrowth stems with an understorey comprised of
Bedfordia arborescens, Acacia spp. trees, Cassinia spp.,
and a range of other shrub species. The six sites in 
P. radiata forest were 10–15 years old and had yet to
be thinned. The dominant trees in these stands were
,20 m tall and supported little or no ground or shrub-
storey cover except for occasional Cassinia spp. stems.
Detailed vegetation surveys completed as part of
another major investigation in the study area
(Lindenmayer et al. 1999) indicated there was con-
siderable similarity in vegetation structure and plant
species composition across the different eucalypt sites,
and across the six P. radiata sites. Relatively uniform
vegetation on the P. radiata and eucalypt sites, respec-
tively, helped reduce between-site variations in the
range of bird species likely to occur in the two forest
types. Logistics dictated that all 12 sites used in our
experiments be located within an area of ,9 km2. This
facilitated the movement of observers between study
sites and minimized asynchrony of sampling times.

Site preparation and field counting protocol

Each of the 12 sites commenced at the edge of a gravel
road and followed a set compass bearing into the 
forest. The sites were prepared for counting by setting
out a 400 m line of coloured flagging tape which guided
observers along the strip transect. A total of four tran-
sect counts of equal length was completed during each
counting event; 0–100 m, 100–200 m, 200–300 m, and
300–400 m. Five minutes were allocated for counting
birds along each of the four 100 m segments. Flagging

tape of a different colour was used to mark the 50 m,
100 m, 150 m, 200 m, 250 m, 300 m, 350 m and 
400 m points along each flagged transect. The 100 m,
200 m, 300 m and 400 m stations were the locations for
the point interval counts. Birds were counted for five
minutes at each location for the point interval counts.
Two additional 400 m long lines of flagging tape were
set out 50 m either side of the 400 m long main tran-
sect line. These additional flagged lines marked the
boundaries of each survey site and the limits of the area
within which the zig-zag walk was employed. A total
of four counts using the zig-zag walk method was used
to record birds on a given site. These were of equal
length and took place around the 0–100 m, 100–
200 m, 200–300 m, and 300–400 m sections of the
flagged line. For each 100 m segment of the zig-zag
walk, observers tracked a 100 m long path from the 
0 m point on one of the flagged boundary lines to the
100 m point on the opposite boundary line passing
through the marked 50 m station on the main transect.
This procedure was repeated as observers passed
through the 150 m point on the main transect as they
traversed from the 100 m point to the 200 m point on
the opposite boundary line. Five minutes was allocated
to count birds within each 100 m segment of the zig-
zag walk. Thus, the time spent counting birds (20 min)
was identical for the strip transect, point interval count
and the zig-zag walk.

Experimental design

Twelve experienced observers from the Canberra
Ornithologists Group participated in this study. Each
observer surveyed three of the six sites in P. radiata
forest and three of the six sites in Eucalyptus forest. A
given observer completed three surveys in a given 
forest type before switching to the other type of vege-
tation. Each observer used a different observation
method for each of the three P. radiata sites and each
of the three Eucalyptus sites. Thus, each observer
employed each bird observation method twice; once in
P. radiata forest and once in Eucalyptus forest. Each
observer completed a survey of one site on any given
day, requiring six days to complete data collection.
Assignment of observers to sites, day and method was
achieved by use of a series of Graeco–Latin squares
(Cochran & Cox 1956). This ensured that within the
groups of three observers and three sites over three
days, all effects were balanced with respect to each
other. All surveys were completed between 1430 and
1600 h and were restricted to warm, humid afternoons
characterized by sunshine and intermittent cloud
cover. Afternoons with similar climate conditions were
surveyed to reduce random effects between sampling
days due to large differences in weather conditions
(Slater 1994). Bad weather forced cancellation of field-
work scheduled for Day 5. Because the same group of
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observers were available for a limited time, this meant
the design was incomplete resulting in some con-
founding between observers, sites and method effects.
However, this incomplete design still has high statisti-
cal efficiency and confounding between fixed and ran-
dom factors was low (< 10%). Statistical efficiency is
measured by comparing the variance of the incomplete
design with that of the full design (Mead 1988).

Observers recorded the numbers of each species of
bird detected by sight and/or hearing for their assigned
site and method.

Preliminary data analysis and statistical methods

A total of 65 species of birds was recorded in the experi-
ment. In this study we focused on the ‘detectability’ of
birds, rather than the more traditional functional or
guild-type attributes. The seven attributes that we con-
sidered likely to influence the chances of a bird being
detected by sight or sound were: body size, the qual-
ity and distinctiveness of calling, loudness of calling,
frequency of calling, colour of plumage, behavioural
patterns, and foraging height. Expert assessment rated
each of these detectability attributes on a scale 1, 2 or
3. A final classification comprized of nine groups of
birds was produced by examination of the two-dimen-
sional configuration of points representing the 65
species derived by a Principal Component Analysis 
of the seven detectability scores together with expert
opinion. General attributes of each of these groups, as
well as a few of the taxa representative of each one, are
set out in Table 1.

As multiplicative effects seem more plausible than
additive effects in our experiment, the response vari-
able for statistical analyses was the logarithm of the
aggregate abundance of birds counted in each of the
nine groups. Observer effects were considered to have
been randomly drawn from a pool of expert observers.
That is, observer differences were treated as con-
tributing to the variance of counts rather than as a bias
in the mean count. Assessment of the significance or
otherwise of observer random effects involved estimat-
ing the observer component of variance and calculat-
ing a likelihood-ratio-based test statistic (Robinson
1991). An analysis of variance table showing the struc-
ture of variance decomposition (i.e. the model) for
group 7 birds detected by hearing is given in Table 2.
Inferences relating to forest type effects are based on
estimates of site variation within the two broad types
of forest in our experiment so caution is needed in inter-
preting the results. However, this lack of effective repli-
cation is not so important here because an assessment
of these effects is incidental in this study. Estimates of
variance components and fixed and random effects
were obtained by a general method of estimation known
as restricted maximum likelihood (REML) (Robinson
1991). Patterns of observer variability across groups
were explored by Principal Components Analysis of
observer effects.

Examination of residuals following an initial analy-
sis provided a check of the compatibility of the 
model and data. Counts were low for some bird 
groups, and in these cases the results have not been
reported as the usual distributional assumptions 
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Table 1. Groups of birds and their distinctive features

Group
number Description Examples

1 Small colourful birds with few calls Scarlet robin, flame robin.

2 Small plain coloured birds foraging in the low shrubs layer Brown thornbill, white-browed scrub-wren, silvereye.

3 Birds with more cryptic behaviour and/or faint infrequent Striated thornbill, spotted quail-thrush, red-browed
calls that may be difficult to recognise treecreeper, olive whistler.

4 Birds with distinctive behaviour that are mid-storey to Grey fantail, rufous fantail, satin flycatcher,
undercanopy foragers leaden flycatcher. 

5 Large, very active and visible birds with a loud call Australian magpie, pied currawong, crimson rosella,
yellow-tailed black cockatoo, sulphur-crested 
cockatoo. 

6 Frequent calling birds with loud and distinctive calls Willie wagtail, grey shrike thrush, blackbird, noisy 
friarbird. 

7 Frequent calling birds with active movements Spotted pardalote, striated pardalote, white-throated
treecreeper, golden whistler, rufous whistler.

8 Birds with penetrating calls but cryptic and/or hard to see Brush cuckoo, fan-tailed cuckoo, shining bronze
cuckoo, eastern whipbird, eastern yellow robin. 

9 Large birds with distinctive calls Red wattlebird, black-faced cuckoo-shrike, grey 
butcherbird, satin bowerbird, laughing kookaburra.
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necessary for valid statistical inference are unlikely to
be met.

RESULTS

Hearing data

Considerable information was gathered for detections
of birds by call but sight records were substantially more
limited. Therefore, most of the results outlined below
relate to detection by call.

Observer components of variance (a measure of 
heterogeneity) were significantly (P < 0.05) different
from zero for groups 2, 4, 7 and 9, but not for groups
3, 5 and 8. For groups 1 and 6, there was some evi-
dence of observer heterogeneity although this was not
statistically significant (P < 0.10). Variance components
and associated change-in-deviance statistics are given
in Table 3.

For a given site on a given day the variance of the
logarithm of the count of the number of birds heard in
20 min is: s2 1 s2

0, where s2 and s2
0 are estimates of the

residual ‘observation’ variance and the observer vari-
ance, respectively. Under the assumed model that

observer effects are Normal with variance s2
0, an

approximate 95% confidence interval (CI) is given by:
6 2 3 √ (s2 1 s2

0).
With the exception of group 9, for bird groups for

which there was significant observer heterogeneity, the
observer component of variance was approximately the
same magnitude as the inherent observation variance
(Table 3). Thus, observer heterogeneity increased the
width of the confidence interval of the logarithm of the
number of birds heard by ,40%. For group 9 this will
be conservative. It follows that if two observers were
to count birds on a given site, the variance of the aver-
age of the log counts of the two observers will be
roughly equivalent to that obtained by a single observer,
if there were no observer differences.

It should be noted that observation error is ,45%
of the mean for groups 1, 4 and 7 and around 85% 
of the mean for groups 2, 5, 6 and 8 (Table 3). Thus,
relative error remains reasonably large even if two
observers are used. To increase the precision of counts,
more than two observers are required. Day and site
components of variance are consistently small relative
to observation variance (Table 3).

A scatterplot matrix in Fig. 1 contains pairwise
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Table 2. Analysis of variance table for birds allocated to group 7 and detected by hearing

Source of variation d.f. Sum of squares Mean square Variance ratio

Site stratum
Forest type 1 7.599 7.599 5.55
Residual 10 13.695 1.369 7.69

Day stratum 4 1.284 0.321 1.81
Observer stratum 11 6.019 0.547 3.07
Site 3 day 3 observer stratum

Method 2 4.037 2.019 11.41 (P < 0.001)
Forest type 3 method 2 1.600 0.780 4.41 (P = 0.022)
Residual 28(1) 4.952 0.178

Table 3. Estimates of observer variance components, associated change-in-deviance statistics and P-values, based on a χ2

(1 d.f.) distribution for log bird counts

Observer variance Change-in-deviance
Bird group component statistic P-value Residual Day Site Mean [log(counts + 1)]

1 0.030 3.1 0.078 0.118 0.003 0.000 0.22
2 0.44 14.0 <0.001 0.338 0.000 0.000 1.72
3 0.0* 0.0 1.0 0.250 0.042 0.036 0.26
4 0.156 7.7 0.006 0.164 0.022 0.117 0.9
5 0.0* 0.4 0.53 0.341 0.009 0.027 1.46
6 0.144 2.7 0.10 0.402 0.000 0.000 1.29
7 0.123 8.7 0.003 0.166 0.013 0.111 2.01
8 0.0* 0.0 1.00 0.388 0.000 0.004 1.07
9 0.087 6.7 0.01 0.170 0.000 0.062 0.56

*Groups for which there were a large number of zeros and the distribution of the data may breach assumptions needed for
valid inferences from statistical analyses.

Also included are estimates of variance components for the other random terms in the model and means of log (bird 
abundance).

32



graphs of observer effects for all groups except groups
3, 5 and 8 for which observer heterogeneity was 
not statistically significant. A high value indicated that
a given observer heard more birds than the average,
while a low value corresponded to a lower than aver-
age count by an observer for a given group. These
graphs facilitate an analysis of our sample of observers.
For example, observer 6 produced low counts for 
all groups, but particularly bird groups 6, 7 and 9.
Conversely, observer 9 produced high counts for all
groups. However, such consistent patterns were not
obtained for all observers; 11 typically recorded aver-
age counts for group 9 birds but low ones for group 7.
Observers 1, 3 and 7 produced consistently similar
counts for all groups (Fig. 1).

The above analysis allows assessment of pairwise pat-
terns only. Given this, observer effects were subject to
Principal Components Analysis of observer effects.
This examined patterns of observer heterogeneity by
considering all groups simultaneously. The first prin-
cipal component accounted for 78.1% of the variation
between the observers and the second 9.3%. The bird
groups contributing most to the first vector were 2, 4,
6 and 7. A contrast between a high count on group 4
(and to a lesser extent group 6) and a low count on
group 9 vs a high count on group 9 and low count on
group 4 dominated the second vector. Table 4 shows
the loadings on the first two vectors. Scores of the first

two principal components are graphed in Fig. 2; 
point labels are the observer identities. An inspection
of Fig. 2 shows some evidence of clustering for our 
sample of observers; possible clusters being: (1, 3, 7,
8), (12, 2, 5, 4, 9) and (6, 10). Results obtained 
from observer 11 did not cluster with any other
observer.

Sight data

Sufficient information was available to complete 
statistical analyses of detections by sight for only two
categories of birds; group 2 and group 5. For group 2
birds, there was a significant (P = 0.01) method effect

274 R. B. CUNNINGHAM ET AL .

Fig. 1. Pair-wise plots of obser-
ver effects for 6 groups of taxa
detected by hearing. The num-
bers in each square correspond
to individual observers in the
experiment.

Table 4. Vector loadings from Principal components analy-
sis exploring the major contrasts in the detectability (by hear-
ing) of different bird groups

Bird group Vector 1 Vector 2

1 20.052 20.198
2 20.780 20.171
4 20.401 20.501
6 20.297 20.271
7 20.353 20.118
9 20.126 20.770
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and significant (0.159, χ2 = 6.6, P = 0.01) observer 
heterogeneity. The mean number of group 2 birds
detected per zig-zag walk was 1.27 which was almost
twice as many as the strip transect (0.65) and the point
count (0.86) [SE of the difference between two means
(SED) = 0.19]. A plot of observer effects for group 2
versus group 5 birds, showed observer 6 recorded very
high counts for both groups (Fig. 3). This finding 
provided an interesting contrast with the results of
analyses of the call data in which observer 6 returned
low counts for all birds groups, including group 2.

Other effects

There was evidence of forest type by method interac-
tion effects for group 4 birds (P = 0.04) and group 7
birds (P = 0.02). There also was a method (P = 0.04)
and forest type effect (P = 0.01) for group 9 birds.
Mean values are given in Table 5. More group 7 birds
were recorded using point interval counts than either
the zig-zag walk or the strip transect. These effects were
more pronounced in stands of P. radiata trees than in
Eucalyptus forest, and fewer birds were recorded in 
P. radiata. (Table 5). More group 4 birds were detected
using point interval counts in sites located in Eucalyptus
forest. However, this pattern was not the same in P. radi-
ata forest (Table 5). Interpretation of the results for
group 9 birds requires caution as these birds were
uncommon and there were many zero observations.

DISCUSSION

Our investigation was a carefully designed experimen-
tal study of the detectability of forest birds by differ-
ent observers using different observation methods in
two forest types. An important outcome of our work is
that we have been able to quantify observer hetero-
geneity for the detection of forest birds (e.g. see Table
3) and to measure its effect on the precision of counts.
Our data support a recommendation that the mean
count of at least two observers be used as an estimate
of abundance. This will essentially eliminate the effect

OBSERVER HETEROGENEITY IN BIRD COUNTS 275

Fig. 3. Scatter plot of observer effects for Group 5 birds vs
Group 2 birds detected by sight.

Fig. 2. Plot of the first two principal components scores of
the observer effects for six groups of taxa detected by hear-
ing. The numbers in the plot correspond to the identities of
field observers.

Table 5. Mean values [and SE of the difference between two
means (SED)] for significant effects for log of counts of birds
detected by hearing

Group 4
Method

Forest type PC ST ZG
Eucalypt 1.45 1.05 1.33
Pine 0.67 0.64 0.30 (SED = 0.23)

Group 7
Method

Forest type PC ST ZG
Eucalypt 2.57 2.26 2.28
Pine 2.22 1.68 1.12 (SED = 0.22)

Group 9
Forest type

Eucalypt 0.91
Pine 0.22 (SED = 0.15)

Method
PC ST ZG
0.67 0.66 0.35 (SED = 0.15)

Methods are point interval count (PC), zig-zag walk
(ZG) and strip transect (ST).
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of observer variability on the precision of the count.
However, our data show that observation error remains
reasonable large for all groups, in particular for groups
2 and 6. Clearly, using mean counts obtained by more
than two observers can reduce this.

Observer heterogeneity was found for many groups
of birds, both for detection by call and by sight. For
example, large observer differences in birds heard were
recorded for groups 2, 4 and 7 but not for groups 5 and
6. Our data showed an interaction between observer and
bird group, i.e. inconsistency among observers in the
ordering of groups of birds heard most and least. For
example, observer 11 typically recorded average counts
for group 9 birds but low ones for group 7 (Fig. 2).
Similarly, although observers 1, 3 and 7 produced sim-
ilar counts for all groups, they ranged from above aver-
age for group 7 to below average for group 9 (Fig. 2).

Differences between observers were more pro-
nounced for some groups of birds than others. Variation
in experience among observers could have contributed
to these findings. Greater observer differences would
be likely to occur among taxa not particularly familiar
to all observers. In addition, active birds that call often
(e.g. group 7 taxa) or species that appear to follow
observers (such as some taxa belonging to group 2 and
group 4) might be prone to being double or triple-
counted by some less experienced observers. These
groups (2 and 4) were characterized by substantial
observer heterogeneity (P < 0.006 or smaller) (Table 3).
Inter-relationships between the behaviour of birds and
the way observers attempt to detect them also may con-
tribute to substantial observer heterogeneity. For 
example, the largely visual search approach employed
by observer 6 resulted in him seeing more small 
common birds (e.g. those assigned to group 2) than
other observers.

Point interval counts usually generated higher mean
values for numbers of birds detected by call (e.g. groups
4, 6, 7 and 9), but other methods gave higher values
for abundance from sight data (groups 2 and 5).
Walking and counting birds involves two foci of con-
centration that can result in some birds being missed.
In addition, the noise associated with constant observer
movement (and the movement itself) can cause some
birds to stop calling and/or prevent some calls being
heard (Pyke & Recher 1985). More group 2 birds were
detected by sight using the zig-zag walk. In the case of
group 2 birds, there were several taxa that respond to
disturbance with agitated movements and alarm calls
(e.g. white-browed scrub wren and brown thornbill).
The zig-zag walk may have traversed more territories
and disturbed more birds, leading to higher counts than
other methods. Method effects were not consistent for
other groups. For example, no method effect was iden-
tified for sight data for group 5. As in the case with
observers, our data do not allow us to determine which
method produces ‘better’ results than others. Notably,

high counts may not necessarily equate to the best
counts.

Counts of birds were considerably higher for detec-
tion by calls than for detection by sight, a result con-
sistent with other studies of bird counting methods in
the forests of southeastern Australia (Pyke & Recher
1985). For groups 2 and 5, the set of factors found to
influence detectability by sight were different from
those identified from call data. For example, we
recorded significant observer differences for call data
gathered for group 2 birds. However, there were both
observer and method effects for sight data. This out-
come was not surprising as different cues are obviously
used by observers to detect birds by sight compared
with hearing. This is illustrated by the fact that the only
two groups of birds for which sight data could be 
analyzed were the small, common ones that were active
close to observers (group 2) and large, active and highly
visible birds (group 5). The attributes that character-
ized the other groups typically resulted in them being
detected by hearing rather than by sight.

At present, considerable effort is dedicated to sur-
veying populations of vertebrate fauna throughout
Australia. Data collected in these surveys are frequently
subjected to sophisticated analyses. Much less effort has
been allocated to a critical examination of sampling
design and survey methods, although there are some
valuable studies of survey methodologies for birds (e.g.
Davies 1984; Recher 1984, 1988; Bell & Ferrier 1985;
Pyke & Recher 1985; Ralph et al. 1997). In much of
the recent upsurge in survey activity, the validity and
effectiveness of field methods is rarely questioned or
assessed. It is clear that more critical appraisal of field
techniques and observation methods is necessary given
the increasing number of surveys being undertaken to
underpin key decisions on land use allocation and land
management (e.g. environmental impact statements
and comprehensive regional assessments). Appraisals
of field methods will be very important for projects that
require input from many different observers. In design-
ing field surveys for birds, the counting method
employed, the types of forest being studied, and the rel-
ative emphasis given to sight vs call data need careful
consideration (Pyke & Recher 1985).

Few other studies on Australian forest birds involv-
ing multiple observers have attempted to quantify
observer effects (but see Kavanagh & Recher 1983; Pyke
& Recher 1985). Given the wide range of bird surveys
being carried out in Australia (e.g. the commencement
of the new Atlas of Australian Birds, Birds Australia,
Melbourne) there is a need for a more rigorous
approach to the study of effects such as observer het-
erogeneity on the precision of counts. This study is an
example as to how this may be done. Our findings also
provide some general guidelines on how much sampling
is needed to reduce the effects of observer variability on
counts.
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Abstract. We report findings of a large-scale study in a 100 000-ha subsection of the
Tumut region in southern New South Wales, southeastern Australia. The study was designed
to measure the effects of landscape context and habitat fragmentation on forest birds. The
study region consisted of a forest mosaic characterized by different landscape contexts:
large, continuous areas of native Eucalyptus forest, extensive stands of exotic softwood
(radiata pine, Pinus radiata) plantation, and remnant patches of native Eucalyptus forest
scattered throughout the extensive areas of radiata pine plantation. A set of 85 eucalypt
remnants was randomly selected across several stratifying variables: four patch size classes
(1–3 ha, 4–10 ha, 11–20 ha, and .20 ha), two isolation age classes (,20 years and .20
years since fragmentation), and five dominant eucalypt forest type classes. In addition to
the 85 eucalypt remnants, a further 80 3-ha sites were selected for study: 40 in large,
continuous areas of eucalypt forest and 40 in radiata pine stands. Point-interval counts of
forest birds at the 165 sites were conducted in 1996 and 1997.

Of 90 species recorded, 23.1 species (95% confidence interval, 22.0, 24.2 species), on
average, were present in continuous eucalypt forest, 20.6 (19.5, 21.7) species in patch-
shaped eucalypt remnants, 20.6 (19.5, 21.7) species in strip-shaped eucalypt remnants, and
16.7 (15.6, 17.8) species in radiata pine. Strong gradients in bird assemblages were found.
These gradients were governed by a combination of landscape context, remnant size, and
remnant shape effects, and, in the case of radiata pine sites, the extent of native forest
surrounding the pine. These gradients could, in part, be explained by bird life history
attributes such as foraging guild and nesting height. For example, birds more often detected
in patch-shaped remnants were smaller, produced smaller clutches, were more likely to be
migratory, and typically had cup nests or burrows.

The results of our study showed that eucalypt fragments of all sizes and shapes have
significant conservation value. This is because they contain many native species of birds,
some of which are more abundant in fragments than they are in continuous eucalypt forests,
and also because they increase native bird populations in nearby non-native pine plantations.

Key words: Australia; bird frequency profiles; correspondence analysis; Eucalyptus forest; forest
bird assemblages; habitat fragmentation; landscape context; native forest conservation; Pinus radiata
plantations; statistical modeling.

INTRODUCTION

A considerable body of ecological theory and an
increasing number of empirical studies suggest that ma-
jor changes in the distribution and abundance of or-
ganisms occur in response to human-induced changes
to landscapes, particularly where there is loss of habitat
and fragmentation of the original vegetation cover
(Saunders et al. 1987, Andrén 1994). Not all of the
species native to a given area are necessarily disad-
vantaged by modifications of natural landscapes, and
some species remain unaffected (Davies and Margules
1998) or even benefit (Saunders and Ingram 1995). The
variation in species response to human-derived land-

Manuscript received 13 March 2000; revised 10 September
2000; accepted 17 October 2000; final version received 6 Decem-
ber 2000.

4 E-mail: davidl@cres.anu.edu.au

scape change has stimulated research into determining
whether particular species or sets of taxa respond in a
predictable way (Terborgh 1974, Laurance 1991). For
example, considerable effort has been expended over
the past few decades to examine the theory of island
biogeography (MacArthur and Wilson 1967) and as-
sociated forecasts of species diversity and species turn-
over in fragmented habitats (summarized by Shafer
1990). However, many empirical studies have produced
results inconsistent with forecasts from island bioge-
ography (e.g., Metzger 1997, Zimmerman and Bier-
regaard 1986), and several reviews have questioned the
applicability of the paradigm to appropriate quantifi-
cation of the effects of habitat fragmentation (Saunders
et al. 1991, Doak and Mills 1994). Nested subset theory
(Patterson 1987) attempts to extend the species–area
relationship that underpins island biogeography theory
by tracking both the numbers of species and their iden-
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tities on ‘‘islands.’’ Nested subset theory predicts that
rare species should only occur in species-rich samples.
More specifically, in the context of habitat fragmen-
tation (see Doak and Mills 1994), nested subset theory
states that species-poor small fragments should support
assemblages that are subsets of larger, species-rich
fragments (Patterson 1987, Cutler 1991). However, a
number of studies have failed to find nestedness in
species’ responses to habitat fragmentation (e.g., Hans-
son 1998, Jonsson and Jonsell 1999). The concept of
metapopulation dynamics also has been used widely to
describe the spatial arrangement of subpopulations of
species in fragmented environments (e.g., Arnold et al.
1993, McCullough 1997), particularly those taxa sus-
ceptible to localized extinction and recolonization
(Hanski 1998). An increasing number of studies have
identified species that display various types of meta-
population dynamics (e.g., Hill et al. 1996). Neverthe-
less, it is not clear whether or not metapopulations are
common in real landscapes. Some authors have argued
that they could be relatively rare (Hastings and Har-
rison 1994), in part because many species are not con-
fined to discrete habitat patches and/or connected by
infrequent dispersal (Harrison and Taylor 1997). These
considerations have stimulated Hanski and Simberloff
(1997) to warn against automatically applying the me-
tapopulation paradigm to what may initially appear to
be a fragmented landscape.

The use, but also the potential limitations, of the
paradigms briefly outlined here (as well as others not
discussed) highlight the need for large-scale experi-
ments, not only to rigorously test these ideas, but also
to better quantify species and community responses to
landscape modification (Robinson et al. 1992, Bowers
et al. 1996, Schmiegelow et al. 1997). Important effects
may be overlooked by investigations of habitat frag-
mentation if contrasts with unfragmented control sites
are not made (Margules 1992), if only a limited (and
unreplicated) suite of remnant sizes is studied, or if the
use of the landscape matrix is ignored. For example,
the use of the landscape matrix can strongly influence
species’ responses to fragmentation (Gascon et al.
1999). The suitability of the landscape matrix and the
ability of animals to move through it may influence
population persistence in patchy and fragmented land-
scapes (Stouffer and Bierregaard 1995, Sarre et al.
1996, Sisk et al. 1997). In addition, an increase in spe-
cies number in fragments can occur because of a pre-
dominance of edge or generalist taxa from the sur-
rounding landscape matrix (Gascon and Lovejoy 1998,
Ås 1999), or the influx of organisms displaced from
the adjacent landscape matrix (Darveau et al. 1995,
Bierregaard and Stouffer 1997). Similarly, species that
persist in the landscape matrix will often also be those
that persist in habitat fragments (Blake 1983, Diamond
et al. 1987). Thus, the results of large-scale experiments
that have a strong inferential basis and that enable in-
formed proactive conservation strategies may provide

the sort of information needed to limit the decline of
taxa sensitive to landscape change (Burgman and Lin-
denmayer 1998).

In this paper, we report results of a large-scale study
of bird distribution patterns in a fragmented forest land-
scape at Tumut in southern New South Wales (NSW),
southeastern Australia. Our study of the use of the for-
est mosaic at Tumut has particular relevance for the
way in which highly modified wood production forest
landscapes, especially those dedicated to intensive tim-
ber plantation development, can be designed to make
a better contribution to wildlife conservation. The
study region consisted of a forest mosaic characterized
by different landscape contexts: large, continuous areas
of native Eucalyptus forest, extensive stands of exotic
softwood (radiata pine, Pinus radiata) plantation, and
remnant patches of native Eucalyptus forest scattered
throughout the extensive areas of radiata pine planta-
tion. The fragmentation of the original Eucalyptus for-
est by the establishment of the radiata pine plantation
occurred 15–65 yr ago and was precisely known (to
the week). Birds were chosen for study because they
often form species-rich assemblages (Wiens 1989, Gill
1995), with different taxa using a wide variety of hab-
itats (Recher 1985), making it possible to determine
whether there are life history features (Ford 1989, Row-
ley and Russell 1991) common to taxa that have re-
sponded in a similar way to landscape change. Here,
the principal objective was to examine whether there
were differences in bird assemblages between land-
scape contexts, and whether these differences could be
explained by measured habitat covariates or life history
attributes.

METHODS

Study area

The study was undertaken in a 100 000-ha subsection
of the Tumut region in southern NSW. The study region
supports the following four broad classes of forest cov-
er (termed ‘‘landscape contexts’’): (1) extensive
(.50 000-ha) areas of exotic softwood radiata pine
plantation (the Buccleuch State Forest) that have been
established predominantly on areas formerly support-
ing native Eucalyptus forest; (2) remnants of native
eucalypt forest that escaped clearing for plantation es-
tablishment and are now surrounded by stands of ra-
diata pine (Fig. 1), classified into two broad shape clas-
ses (circular or elliptical-shaped remnants, termed
patches, and narrow, linear, strip-shaped remnants,
termed strips, often containing watercourses); and (3)
large, continuous areas of native eucalypt forest that
bound the northern, eastern, and southern boundaries
of the radiata pine plantation (the Kosciuszko and Brin-
dabella National Parks as well as the Bondo and Bun-
gongo State Forests).

Clearing of native vegetation to plant radiata pine
commenced in the mid-1930s and continued until the
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FIG. 1. The location of a subset of the study sites in eucalypt remnants, radiata pine sites, and sites in large, continuous
areas of native eucalypt sites at Tumut, New South Wales, Australia.

mid-1980s. The remnants within the plantation were
set aside for a number of reasons, including steepness,
protection of water quality, and representativeness of
the original vegetation cover. Detailed field surveys
(Lindenmayer et al. 1999) indicated that characteristics
of the remnants and continuous areas of eucalypt for-
ests such as lithology, climate, and topography could
be matched in areas planted to radiata pine.

Survey design

The study region contained 192 remnants of native
eucalypt forest located within the boundaries of the
radiata pine plantation; 85 remnants were selected us-
ing stratified random sampling. The set of 85 eucalypt
remnants was replicated across several stratified clas-
ses: four patch size classes (1–3 ha, 4–10 ha, 11–20
ha, and .20 ha), two isolation age classes (,20 yr and
.20 yr since fragmentation), and five dominant eu-
calypt forest type classes (Eucalyptus viminalis; E. ra-
diata; E. camphora; E. macrorhyncha and E. bridges-
diana; and E. dalrmypleana, E. pauciflora, and E. stel-
lulata).

In addition to the 85 eucalypt remnants, a further 80
sites were selected for study; 40 in large, continuous

areas of eucalypt forest, and 40 in radiata pine stands.
Recurrent thinning and clear-felling of the planted pine
stands over the past 65 yr meant that the radiata pine
stands very rarely contained isolated eucalypt trees, a
factor that has influenced the response of some forest
birds in other studies (Recher et al. 1987a).

Climate, forest type, and geology data were used to
cross-match the 165 sites in the study, ensuring that
the ranges of environmental and other conditions were
matched across the landscape context classes (Linden-
mayer et al. 1999).

Important design features that provide a strong in-
ferential basis for the interpretation of our results in-
clude the following: (1) field survey protocols were
established following a pilot study (Cunningham et al.
1999); (2) stratified selection of the eucalypt remnants
ensured that the full environmental space of the study
region was represented; (3) eucalypt remnant sites were
replicated for each strata where possible; (4) random
selection within each strata minimized the chance of
bias and averaged over random factors; (5) site attri-
butes such as geology, climate, and forest type in con-
tinuous eucalypt forest were matched to those of eu-
calypt remnant sites; (6) experimental units were of
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fixed size; (8) sites (i.e., survey transects) were chosen
from a random start point on the edge of each eucalypt
remnant and were directed toward the center; and (9)
sampling intensity was independent of remnant size,
which was appropriate for our comparative investiga-
tion.

In this study, the experimental unit was a remnant,
rather than observations within a remnant. According-
ly, we selected 85 remnants instead of the alternative
of choosing multiple sites in fewer remnants. In com-
parative studies, there are compelling statistical argu-
ments in favor of increasing the number of experi-
mental units rather than increasing the number of ob-
servations per unit.

Bird surveys

A permanent transect was established at each of the
165 sites (i.e., the 85 ecalypt remnants, 40 sites in large
areas of continuous eucalypt forest, and 40 sites in
radiata pine forest). For radiata pine sites, sites in con-
tinuous areas of native forests, and the 63 eucalypt
remnant sites .3 ha, a 600 m long 3 50 m wide transect
was set out. For the eucalypt remnant sites ,3 ha,
transect length was scaled relative to area. In the case
of the eight 1–2 ha eucalypt remnant sites, a 200-m
transect was established. A 400-m transect was estab-
lished for the 14 2–3 ha eucalypt remnant sites. A con-
tinuous line of colored flagging tape was set out along
the center of each transect and points were marked
every 100 m, starting at 0 m. Thus, for most sites, bird
data were recorded at seven plots using a 5-min point-
interval count (sensu Pyke and Recher 1983).

Two surveys for birds were undertaken, one in late
October–early November 1996 and a second in late
October–early November 1997. In the study region, late
October–early November is the peak breeding season,
when birds have established territories and exhibit
strong patterns of site fidelity. For each point count,
observers recorded the numbers of each bird species
seen or heard within an approximate 50-m radius. Birds
flying over transects were recorded but not included in
the analysis. Counts were completed between 0530 and
0930 and were not undertaken on days of poor weather
(rain, snow, high wind, heavy fog, or heavy cloud cov-
er). To minimize the effect of confounding between
landscape context classes and weather conditions, rep-
resentatives from all four context classes were sampled
on any given day.

A total of 22 experienced bird observers from the
Canberra Ornithologists Group participated in the sur-
veys in 1996 and 1997. All 165 sites were surveyed in
1996, and ;50% of the remnant sites were sampled a
second time during that year. Different observers were
used for the repeat counts. The same 165 sites were
surveyed again in 1997. Although observers were ex-
perienced, they varied in their ability to detect some
(but not all) groups of birds. Cunningham et al. (1999)
showed that, for the 22 experienced observers, extra

variability due to observer heterogeneity can be com-
pensated for by averaging the counts of two or more
observers at the same site.

Life history attributes

Data on life history and other attributes of birds were
collated from the literature. These data included body
mass, group type (solitary, pairs, or flock), social sys-
tem (monogamous, polygamous, etc.), type of nest
(hollow, cup, mud bowl, etc.), nest placement (hori-
zontal fork, ground, etc.), nesting height, number of
eggs laid in a clutch, number of broods per year, and
movement behavior (resident vs. migrant, latitudinal,
or altitudinal migrant). In addition, we adopted Mac
Nally’s (1994) classification of foraging guilds for our
analyses and assigned each species to one of 10 guilds
based on their major foraging activities: sweeper (cap-
tures airborne insects on the wing); hawker (sallies
from a perched position to capture airborne insect be-
low the main tree canopy but above bushes, sallies to
capture airborne insects from the ground or from bush-
es, or perches and gleans prey on branches and trunks);
pouncer (captures prey on the ground from a perched
position); bush carnivore (perches and gleans prey
from branches, twigs, and tree trunks or searches the
ground, often by probing); ground carnivore (searches
the ground, often by probing or scratching and search-
ing through the leaf litter); bark prober (perches and
gleans prey on branches and trunks, probes and prises
bark, or searches for prey by tearing bark); wood
searcher (perches and gleans prey on twigs, branches,
and trunks; foliage searcher (perches and gleans prey
on leaves and twigs of trees); nectivore (consumes pol-
len, nectar, and blossoms or perches and gleans prey
on leaves, branches, and trunks of trees); granivore
(consumes seeds in the understory; consumes fallen
seeds and seeds of grasses).

Measured covariates

The major factors of interest in our study were land-
scape context and the area and shape of the eucalypt
remnants, but other covariates included measures of
vegetation structure and plant species composition, un-
derlying lithology, and remnant isolation and connec-
tivity (see Lindenmayer et al. 1999). These measures
were used as potential explanatory variables in mod-
eling bird responses.

STATISTICAL METHODS

Measures of bird response

For each species, we recorded the number of plots
on a site (up to a maximum of seven) in which at least
one individual was detected; we refer to this measure
as the detection frequency. Twenty-two remnant sites
had fewer than seven plots (14 eucalypt remnants had
five plots and eight had three plots). Thus, for some
analyses, it was necessary to normalize these counts
by dividing by the number of plots.
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Species richness was calculated as the average num-
ber of species per plot. The precision of this measure
was lower for the small number of sites with fewer than
seven plots.

Data reduction

Our detection frequency data can be represented as
a matrix of counts defined by the observations (site 3
year 3 repeat 5 383 rows) and species (5 90 columns
[the 90 different taxa recorded at Tumut; see Table 1]).
Each row of this matrix represented the detection fre-
quency of each species. We refer to this, for a given
observation, as the bird frequency profile, a multivar-
iate profile of bird ‘‘abundance’’ based on the detection
frequencies. In a similar way, each column for the data
matrix represented the detection frequency pattern
across sites and years for each species. We refer to this
pattern as the observation (site 3 year 3 repeat) usage
profile of a given species.

To examine variation in observations in relation to
landscape context, year, observer, and other covariates,
we reduced the dimensionality of the problem by cal-
culating measures of diversity such as species richness
(i.e., the number of species present in each observa-
tion). An alternative, more flexible approach was the
use of the multivariate rank reduction method, corre-
spondence analysis, CA (Greenacre 1984). CA in-
volved deriving a set of scores for observations (as-
sociated with the rows of our data matrix) and a set of
species scores (associated with the columns of our data
matrix), so that they were as highly correlated as pos-
sible for the bivariate distribution represented by the
counts in the table. Mathematically, the solution to the
problem can be viewed as an eigen analysis of chi-
squared distances. Hence, this ordination method is
best suited to count data. The derived row and column
scores provide a set of summary scores representing
salient features of bird frequency profiles for each ob-
servation and site usage profiles for each species, in
fewer dimensions. Interpretation consisted of an ex-
amination of the spread of points in each dimension
and an assessment of whether factors associated with
observations and species could explain some of the
variation in the scores. For our data, correspondence
analysis produced scatter plots with no apparent un-
desirable features (e.g., extreme points and clusters),
as is sometimes the case when it is applied to ecological
data. In addition, our results show that both row scores
and column scores produced by correspondence anal-
ysis were eminently interpretable.

Statistical modeling

Species richness and bird frequency profile scores
were analyzed by general linear mixed modeling (Sear-
le et al. 1992) to assess the effects of landscape context,
year, and other covariates while including extra vari-
ance terms for sites and observers. Variation in bird
frequency profile scores for remnants was further mod-

eled by including attributes such as remnant size in our
statistical analysis. Other covariates considered were
forest type, vegetation structure, and plant species com-
position for all 165 sites. Estimation of parameters in
these models was by weighted least squares and re-
stricted maximum likelihood estimation, REML (Rob-
inson 1991). The statistical significance or otherwise
of fixed effects was assessed using a change-of-devi-
ance statistic, which was compared to the appropriate
chi-square distribution to obtain P values.

Generalized linear mixed modeling (Schall 1991)
was used to examine, for individual species, relation-
ships between detection rate (the detection frequency
normalized by the number of plots), context, remnant
size, and the covariates. In cases in which the random
site and observer variability were small, logistic re-
gression (Collett 1991) was used.

Ordinary least squares regression (Weisberg 1980)
was employed to examine relationships between site
usage scores derived from the correspondence analysis
and the life history attributes of birds.

Spatial correlation

Neighboring eucalypt remnants will tend to have
similar climatic conditions and habitat quality. In ad-
dition, there may be localized dispersal between eu-
calypt remnants; hence, the abundance of individual
species may exhibit patterns of spatial autocorrelation
(Smith 1994), such as may occur with metapopulation
processes (Koenig 1998). Variograms of detection rates
were used to explore patterns of spatial correlation in
the distribution of a subset of species in the eucalypt
remnants.

RESULTS

Data summary

A large number of bird species occurred at Tumut,
and the mean detection rates for each species (see Table
1, which includes scientific names) showed that indi-
vidual taxa varied considerably in their use of the dif-
ferent landscape contexts. Some birds such as the Grey
Shrike-Thrush and the Brown Thornbill were ubiqui-
tous across the study region. Others such as the Cicada
Bird, Gang-Gang Cockatoo, and Olive-backed Oriole
favored large, continuous areas of eucalypt forest, but
others such as the Little Raven, Superb Fairy-Wren,
and Shining Bronze Cuckoo were recorded most often
in the eucalypt remnants. Detection rates of several
species were similar across all broad groups of sites
dominated by eucalypts (i.e., continuous forest and
patch and strip-shaped eucalypt remnants), but were
substantially reduced in radiata pine. Example taxa in-
cluded the White-throated Treecreeper, Yellow-faced
Honeyeater, and Laughing Kookaburra. Another set of
birds was ubiquitous across the eucalypt remnants and
radiata pine sites, but was detected less frequently in
the large, continuous areas of native eucalypt forest
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TABLE 1. List of birds detected during surveys completed at Tumut in southeastern New South Wales, Australia. Listing
is by the number assigned to each species and used in correspondence analysis (see Figs. 3b, 5, and 7).

Common name Scientific name
Species

no.

Mean detection rate†

Euc. Patch Strip Pine

Brown Thornbill
White-browed Scrub-Wren
White-throated Treecreeper
Yellow-faced Honeyeater
Crimson Rosella
Grey Fantail
Rufous Whistler

Acanthiza pusilla
Sericornis frontalis
Cormobates leucophaea
Lichenostomus chrysops
Platycercus elegans
Rhipidura fuliginosa
Pachycephala rufiventris

1
2
3
4
5
6
7

0.383
0.466
0.623
0.905
0.468
0.661
0.451

0.474
0.560
0.655
0.843
0.650
0.655
0.538

0.435
0.674
0.500
0.833
0.511
0.791
0.541

0.414
0.742
0.194
0.448
0.311
0.464
0.654

Golden Whistler
Sulphur-crested Cockatoo
Red Wattlebird
Spotted Pardalote
Striated Pardalote

Pachycephala pectoralis
Cacatua galerita
Anthochaera carunculata
Pardalotus punctatus
Pardalotus striatus

8
9

10
11
12

0.231
0.539
0.561
0.547
0.508

0.220
0.587
0.246
0.358
0.249

0.324
0.472
0.246
0.309
0.192

0.277
0.274
0.071
0.132
0.037

Pied Currawong
Silvereye
Grey Shrike-Thrush
Tree Martin
White-winged Chough

Strepera graculina
Zosterops lateralis
Colluricincla harmonica
Hirundo ariel
Corcorax melanorhamphos

13
14
15
16
17

0.321
0.139
0.656
0.000
0.020

0.382
0.203
0.592
0.002
0.034

0.218
0.191
0.663
0.000
0.018

0.351
0.323
0.677
0.000
0.022

Shining Bronze-Cuckoo
Fan-tailed Cuckoo
Sacred Kingfisher
Grey Currawong
Striated Thornbill
Eastern Yellow Robin

Chrysococcyx lucidis
Cuculus flabelliformis
Todiramphus sanctus
Strepera versicolor
Acanthiza lineata
Eopsaltria australis

18
19
20
21
22
23

0.047
0.118
0.076
0.008
0.189
0.228

0.090
0.089
0.026
0.003
0.137
0.282

0.082
0.118
0.038
0.003
0.138
0.275

0.076
0.112
0.008
0.000
0.032
0.373

Scarlet Robin
Flame Robin
Rose Robin
White-naped Honeyeater
Eastern Spinebill

Petroica multicolor
Petroica phoenicea
Petroica rosea
Melithreptus lunatus
Acanthorhynchus tenuirostris

24
25
26
27
28

0.034
0.046
0.017
0.344
0.175

0.081
0.051
0.010
0.162
0.177

0.040
0.050
0.029
0.192
0.184

0.095
0.099
0.017
0.013
0.012

Bassian Thrush
European Blackbird‡
Pilotbird
Superb Lyrebird
Olive Whistler

Zoothera lunulata
Turdus merula
Pycnoptilus floccosus
Menura novaehollandiae
Pachycephala olivacea

29
30
31
32
33

0.022
0.022
0.006
0.068
0.007

0.040
0.251
0.003
0.053
0.030

0.052
0.211
0.004
0.032
0.042

0.022
0.363
0.012
0.051
0.057

Rufous Fantail
Olive-backed Oriole
Cicada Bird
Little Raven
Australian Raven
Grey Butcherbird

Rhipidura rufifrons
Oriolus sagittatus
Coracina tenuirostris
Corvus mellori
Corvus coronoides
Cracticus torquatus

34
35
36
37
38
39

0.020
0.039
0.062
0.003
0.076
0.022

0.003
0.000
0.000
0.081
0.241
0.003

0.015
0.002
0.001
0.045
0.181
0.013

0.003
0.001
0.000
0.029
0.209
0.022

Satin Bowerbird
Common Starling
Willie Wagtail
Satin Flycatcher
Leaden Flycatcher

Ptilonorhynchus violaceus
Sturnus vulgaris
Rhipidura leucophrys
Myiagra cyanoleuca
Myiagra rubecula

40
41
42
43
44

0.096
0.000
0.000
0.010
0.108

0.060
0.019
0.005
0.017
0.065

0.076
0.001
0.005
0.001
0.084

0.012
0.000
0.001
0.000
0.015

Superb Fairy-Wren
Crested Shrike-Tit
Eastern Whipbird
Varied Sitella
Dusky Woodswallow

Malarus cyaneus
Falcunculus frontatus
Psophodes olivaceus
Daphoenositta chrysoptera
Artamus cyanopterus

45
46
47
48
49

0.066
0.037
0.105
0.021
0.005

0.111
0.049
0.090
0.002
0.000

0.123
0.042
0.146
0.004
0.014

0.047
0.001
0.182
0.003
0.000

Australian King Parrot
Brush Cuckoo
Black-faced Cuckoo-Shrike
Mistletoe Bird
Pallid Cuckoo
Australian Magpie

Alisterus scapularis
Cuculus variolosus
Coracina novaehollandiae
Dicaeum hirundinaceum
Cuculus saturatus
Gymnorhina tibicen

50
51
52
53
54
55

0.101
0.001
0.084
0.008
0.000
0.093

0.011
0.000
0.072
0.003
0.000
0.188

0.011
0.007
0.051
0.011
0.001
0.122

0.003
0.010
0.003
0.001
0.001
0.066

Laughing Kookaburra
White-eared Honeyeater
Wonga Pigeon
Common Bronzewing
Green Finch‡

Dacelo novaeguineae
Lichenostomus leucotis
Leucosarcia melanoleuca
Phaps chalcoptera
Carduelis chloris

56
57
58
59
60

0.240
0.127
0.045
0.013
0.013

0.179
0.068
0.048
0.010
0.042

0.155
0.118
0.011
0.007
0.004

0.081
0.010
0.000
0.002
0.000

European Goldfinch‡
Red-browed Firetail
Yellow-tailed Black Cockatoo
Eastern Rosella
Red-browed Treecreeper

Carduelis carduelis
Neochmia temporalis
Calyptorhyncus funereus
Platycercus eximus
Climacteris erythrops

61
62
63
64
65

0.002
0.005
0.012
0.000
0.049

0.005
0.013
0.034
0.012
0.023

0.019
0.025
0.017
0.000
0.031

0.054
0.013
0.010
0.000
0.000

Wedge-tailed Eagle
Yellow-rumped Thornbill
Buff-rumped Thornbill

Aquila audax
Acanthiza chrysorrhoa
Acanthiza reguloides

66
67
68

0.003
0.000
0.022

0.002
0.003
0.009

0.005
0.001
0.000

0.000
0.000
0.003
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TABLE 1. Continued.

Common name Scientific name
Species

no.

Mean detection rate†

Euc. Patch Strip Pine

Australian Kestrel
Brown Goshawk
Masked Lapwing

Falco cenchroides
Accipter fasciatus
Vanellus miles

69
70
71

0.000
0.005
0.000

0.003
0.001
0.005

0.001
0.001
0.002

0.000
0.000
0.000

Magpie Lark
Horsfield’s Bronze-Cuckoo
Gang-gang Cockatoo
Pacific Black Duck
Crescent Honeyeater

Grallina cyanoleuca
Chrysococcyx basalis
Callocephalon fimbriatum
Anas superciliosa
Phylidonyris pyrrhoptera

72
73
74
75
76

0.000
0.005
0.152
0.000
0.010

0.005
0.009
0.071
0.000
0.003

0.001
0.012
0.066
0.003
0.001

0.003
0.013
0.010
0.001
0.013

Spotted Quail-Thrush
Noisy Friarbird
Brown-headed Honeyeater
White-throated Gerygone
Collared Sparrowhawk

Cinclosoma punctatum
Philemon corniculatus
Melithreptus brevirostris
Gerygone olivacea
Accipter cirrhocephalus

77
78
79
80
81

0.005
0.154
0.019
0.050
0.001

0.000
0.108
0.022
0.026
0.000

0.000
0.056
0.015
0.015
0.000

0.001
0.022
0.000
0.000
0.000

Wood Duck
Galah
Welcome Swallow
Brown Falcon
Yellow Thornbill
Weebill

Chenonetta jubuta
Cacatua roseicapilla
Hirundo neoxena
Falco berigora
Acanthiza nana
Smicrornis brevirostris

82
83
84
85
86
87

0.001
0.005
0.000
0.000
0.002
0.001

0.002
0.007
0.000
0.002
0.000
0.000

0.001
0.001
0.003
0.000
0.000
0.000

0.000
0.000
0.000
0.000
0.002
0.000

Peaceful Dove
Rainbow Bee-eater
Red-capped Robin

Geopelia placida
Merops ornatus
Petroica goodenovii

88
89
90

0.002
0.000
0.000

0.000
0.000
0.000

0.000
0.001
0.000

0.000
0.000
0.003

† Proportion of plots (n 5 7 plots) in which a species was detected, by landscape context class: Euc., continuous eucalypt
forest; Patch, remnant eucalypt patches; Strip, remnant eucalypt strips; Pine, continuous radiata pine plantation.

‡ Introduced species.

FIG. 2. Relationship between species richness and land-
scape context effects, showing means for radiata pine (de-
noted as ‘‘Pine’’ under the associated column on the x-axis)
and continuous eucalypt forest (‘‘Eucalypt’’). Associated
95% confidence intervals for mean values are the solid lines
in the respective columns on the x-axis for radiata pine and
continuous eucalypt forest. The dashed vertical line in each
case shows the 95% CI for an individual observation score
in these two landscape classes. The codes P and S represent
the observations for the patch- and strip-shaped remnants,
respectively. Values for the patches are enhanced by a solid
line showing the significant relationship between species rich-
ness and log of patch area in hectares. Values for the strips
are enhanced by a dashed line showing the significant rela-
tionship between species richness and log of strip area in
hectares.

(e.g., the Olive Whistler and Australian Raven). An-
other subset of birds was recorded more frequently in
radiata pine sites than in other landscape contexts; it
included native species such as the Eastern Yellow
Robin, as well as the introduced Goldfinch. This range
of bird responses highlighted the complexity of land-
scape context effects in our study. The statistical anal-
yses that we report here provide further insights into
the patterns of responses observed.

Species richness

On average, 23.1 (95% confidence interval: 22.0,
24.2) species were present in continuous eucalypt for-
est, 20.6 (19.5, 21.7) species in patch-shaped eucalypt
remnants, 20.6 (19.5, 21.7) species in strip-shaped eu-
calypt remnants, and 16.7 (15.6, 17.8) species in radiata
pine. Species richness differences between continuous
eucalypt forest, eucalypt remnants, and radiata pine
stands were statistically significant (P , 0.001), as
were differences in species richness (averaged across
all sites in the study) between 1996 and 1997 (20.1 and
25.0 species, respectively). There was also a significant
(P , 0.001) positive linear relationship between spe-
cies richness and log of remnant area. There was ev-
idence (P 5 0.035) of a difference in this relationship
between patch-shaped eucalypt remnants and strip-
shaped eucalypt remnants; for patches, the number of
species increased by 1.92 per unit of log(area), whereas
the corresponding increase for strips was 0.71 (Fig. 2).

Correspondence analysis: the analysis of bird
frequency profile scores

Of the 90 species of birds detected at Tumut, 14
species were excluded from multivariate analyses be-
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FIG. 3. Graphical display of scores obtained from cor-
respondence analysis of detection data. (a) Scores for obser-
vations (site 3 year 3 repeat) (row scores) labeled by land-
scape context class: S, strip-shaped remnants; P, patch-shaped
remnants; R, radiata pine; and E, large, continuous areas of
native eucalypt forest. (b) Scores for species (column scores)
labeled by species number; the number assigned to each spe-
cies is given in Table 1.

FIG. 4. Relationships between bird frequency profiles
(score 1) and landscape contexts, showing means for radiata
pine and continuous eucalypt forest. Approximate 95% con-
fidence intervals are shown for the mean (solid vertical line)
and for a single observation (dashed vertical line). The points
show the scores for remnants with superimposed regressions
on log remnant area: the solid line for patches (P), and the
dashed line for strips (S).

cause they were detected on fewer than four sites. Thus,
a matrix of counts of 76 species of forest birds (col-
umns) for 383 (site 3 year 3 repeat) observations
(rows) was used in the analysis.

Only the first two dimensions from the correspon-
dence analysis are considered here because we could
not find interpretable patterns in the third dimension.
Correspondence analysis yielded two sets of points in
a plane: one representing the 383 observations (rows;
Fig. 3a) and one representing the 76 species (columns,

Fig. 3b). Each point in Fig. 3a represents, for a given
observation, a summary of the bird frequency profile
for that observation, weighted according to the relative
abundance of species recorded. Points close together
have similar profiles, whereas those distant are dissim-
ilar. Because correspondence analysis treats rows and
columns in the same way, the points representing spe-
cies (Fig. 3b) are interpreted in a similar way. Here,
points represent site 3 year usage profiles for each of
the 76 species. Thus, species that co-occur in the same
sites 3 years with similar frequencies will have similar
site usage profiles.

Relationship between bird frequency profiles
and site attributes

Scores from correspondence analysis dimensions re-
lating to observations can be interpreted in relation to
other variables associated with observations, such as
landscape context, site covariates, and year, as well as
random observer and random site effects. Bird fre-
quency profile scores of the first dimension show a
well-defined and statistically significant (P , 0.001)
gradient between radiata pine and continuous eucalypt
forest (Fig. 4). Between these two major landscape con-
text classes were the eucalypt remnants.

Additional analysis showed that the bird frequency
profile scores in eucalypt remnants were strongly (P ,
0.001) related to the log of remnant area, and there was
no difference in this relationship between patch- and
strip-shaped remnants (Fig. 4). Thus, the bird frequen-
cy profiles in small eucalypt remnants were similar to
those in radiata pine, whereas those in large remnants
were similar to those in continuous Eucalyptus forest.
Within the radiata pine sites, there was evidence of a
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FIG. 5. The contribution of individual bird species to the contrast between radiata pine and eucalypt forest, ordered by
species site usage (column) score 1.

FIG. 6. Interpretation of bird frequency pro-
file (row) scores (see text) from the second di-
mension of correspondence analysis for (a)
landscape context effects and (b) between-year
effects. Landscapes are: euc, continuous euca-
lyptus stand; patch, patch-shaped remnant;
strip, strip-shaped remnant; and pine, continu-
ous pine plantation.

strong (P , 0.001), negative linear relationship be-
tween bird frequency profile scores and the logarithm
of the area of eucalyptus forest within a 2 km radius
of the site (not shown graphically). Radiata pine sites
close to large areas of eucalypt tended to have bird
profiles similar to those in small-to-intermediate frag-
ments, whereas isolated sites had a ‘‘uniquely’’ pine
profile.

Taxa contributing most to the contrast in bird fre-
quency profiles between eucalypt forest and radiata
pine can be identified by plotting the average detection
frequencies against species order, where the ordering
is by column score 1 (Fig. 5). Species numbered on
the left-hand side of Fig. 5 are those in which the prob-
ability of occurrence was higher in continuous eucalypt
forest than in radiata pine (e.g., Australian King Parrot
and Gang-Gang Cockatoo). Those numbered on the
right-hand side of the diagram include species more
likely to be present in the radiata pine than in contin-

uous eucalypt forest (e.g., Rufous Whister and White-
browed Scrub-Wren).

Although there was a significant (P , 0.001) dif-
ference in bird frequency profile scores for 1996 and
1997, there was no significant interaction between land-
scape context and year. The between-year difference
was small relative to the landscape context differences.

The second dimension obtained from correspon-
dence analysis showed strong (P 5 0.01) evidence of
different bird frequency profiles (not the same contrast
as in dimension 1) between patch- and strip-shaped
remnants (Fig. 6). Taxa distinguishing these profiles
included Crimson Rosella, Sulphur-crested Cockatoo,
and Australian Magpie (species more often detected in
the patch-shaped eucalypt remnants) and Golden Whis-
tler, Eastern Whipbird, Rose Robin, White-eared Hon-
eyeater, and White-naped Honeyeater (species more of-
ten detected in strip-shaped eucalypt remnants; Fig. 7).
There also was evidence of significant year effects (P
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FIG. 7. The contribution of individual bird species to the contrast between patch- and strip-shaped remnants, ordered by
species score 2.

FIG. 8. Summary of significant relation-
ships between the species site usage score 1,
associated with the contrast in bird frequency
profiles between radiata pine and eucalypt for-
est, and life history attributes of birds. Graphs
show the mean relationship and associated 95%
confidence intervals for (a) foraging guilds, sen-
su MacNally (1994): 1, sweeper; 2, hawker; 3,
pouncer; 4, ground carnivore; 5, bush carnivore;
6, bark prober; 7, wood searcher; 8, foliage
searcher; 9, nectivore; and 10, granivore; and
(b) maximum nest height (m), with the 95%
confidence interval indicated by dashed lines.

5 0.001). However, the magnitude of these effects was
smaller than for the first dimension.

Relationship between species scores and life history
attributes

Species site usage (column) scores can be interpreted
in relation to avian life history attributes. Because of
the geometric correspondence of the observation (row)
scores and the species (column) scores, they can be
interpreted simultaneously, providing a means of as-
sociating life history attributes with site attributes.
High colinearity among the life history attributes (e.g.,
body size and clutch size; Olsen 1995) meant that their
relationships with site usage scores were examined one
at a time.

Significant relationships were found between first di-
mension site usage scores and foraging guild (P 5 0.04)

and maximum nest height (P , 0.001; Fig. 8). Birds
belonging to particular foraging guilds such as hawk-
ers, bush carnivores, bark probers, wood searchers, fo-
liage searchers, nectivores, and granivores were less
likely to be detected in radiata pine and small eucalypt
remnants than in continuous eucalypt forest and large
eucalypt remnants. Taxa belonging to foraging guilds
such as sweepers and ground carnivores were those
more likely to occur in radiata pine stands and small
eucalypt remnants. Those species that had a greater
maximum nesting height were more likely to be de-
tected in continuous eucalypt forest and large eucalypt
remnants than in stands of radiata pine and small eu-
calypt remnants.

Our data (see Fig. 9) also showed significant rela-
tionships between the second dimension site usage
scores (associated with patch-shaped vs. strip-shaped
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FIG. 9. Summary of significant relationships between species site usage score 2, associated with the contrast in bird
frequency profiles between patch- and strip-shaped remnants, and life history attributes of birds. Graphs show the mean
relationship and associated 95% confidence intervals. (a) Log of body mass, in grams. (b) Migratory behavior: 1, resident;
2, latitudinal migrant; 3, altitudinal migrant; and 4, both latitudinal and altitudinal migrant. (c) Nest type: 1, hollow; 2, cup;
3, burrow; 4, dome; 5, bowl; 6, mudbowl/cup; 7, suspended purse; and 8, ground depression. (d) Clutch size.

eucalypt remnants) and body size (P 5 0.04), size of
clutch (P , 0.001), nest types (P 5 0.006), and move-
ment patterns (latitudinal vs. altitudinal migrant vs. res-
ident; P 5 0.008). Birds more often detected in patch-
shaped remnants tended to be smaller, produced smaller
clutches, were more likely to be migratory, and typi-
cally had cup nests or burrows.

Supplementary analyses

The locations and configuration of points represent-
ing species in the correspondence analysis (Fig. 3b)
and the diagnostic plots shown in Figs. 5 and 7 provide
insight into the taxa contributing most to the gradient
among observations. Based on this, an indicative set
of taxa was chosen to highlight different responses to
the landscape context effects that we have described.
We modeled detection rate data, rather than count data,
because of the large number of zero counts. The pattern
of effects and inference obtained from the analysis of
detection frequency data should be consistent with
those obtained from count data, as there was a strong,
positive monotonic relationship between detection rate
and count data for all species examined (e.g., Sulphur-

crested Cockatoo, White-throated Treecreeper, and Red
Wattlebird).

Individual species responses to remnant size were
further explored by modeling relationships between the
probability of detection for a selection of species and
remnant size, grouped into four categories: ,3.3 ha,
3.3–9 ha, 9–24.5 ha, and .24.5 ha. We present results
for a subset of exemplar taxa that highlighted varying
responses to eucalypt remnant size effects (Table 2).
The Golden Whistler, European Blackbird, and Aus-
tralian Magpie were significantly more likely to be de-
tected in smaller remnants; Red Wattlebird, Sacred
Kingfisher, Leaden Flycatcher, and White-naped Hon-
eyeater were more likely to be detected in larger rem-
nants; and Superb Lyrebird and Eastern Yellow Robin
were more likely to be detected in the intermediate-
sized remnants. In other cases, species such as the
Laughing Kookaburra had similar probabilities
(;17%) of detection across all remnant size classes,
even though they were more likely to occur in contin-
uous areas of eucalypt forest than in stands of radiata
pine.

Statistical relationships between bird detection rates
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TABLE 2. Predictions of the probability of detection (means, with 1 SE in parentheses) of
selected species of birds in relation to remnant size classes, based on logistic regression
models developed for each species.

Species
no. Common name

Remnant size class (ha)

,3.3 3.3–9 9–24.5 .24.5

1 Brown Thornbill 0.5639
(0.0547)

0.4923
(0.0462)

0.4952
(0.0406)

0.2848
(0.0412)

2 White-browed Scrub-Wren 0.6476
(0.0532)

0.5573
(0.0464)

0.6603
(0.0388)

0.6212
(0.0448)

8 Golden Whistler 0.3436
(0.0580)

0.2446
(0.0440)

0.2847
(0.0406)

0.2545
(0.0441)

10 Red Wattlebird 0.1586
(0.0423)

0.2198
(0.0402)

0.2488
(0.0369)

0.3273
(0.0451)

20 Sacred Kingfisher 0.0044
(0.0040)

0.0185
(0.0069)

0.0263
(0.0072)

0.0727
(0.0131)

23 Eastern Yellow Robin 0.2467
(0.0435)

0.3003
(0.0389)

0.3325
(0.0351)

0.2091
(0.0341)

27 White-naped Honeyeater 0.0837
(0.0323)

0.1424
(0.0340)

0.2201
(0.0355)

0.2273
(0.0406)

30 European Blackbird 0.2379
(0.0488)

0.4025
(0.0472)

0.1722
(0.0319)

0.1242
(0.0314)

32 Superb Lyrebird 0.0264
(0.0115)

0.0588
(0.0143)

0.0407
(0.0105)

0.0364
(0.0112)

44 Leaden Flycatcher 0.0441
(0.0169)

0.0588
(0.0163)

0.0861
(0.0171)

0.1000
(0.0205)

55 Australian Magpie 0.2115
(0.0407)

0.1827
(0.0324)

0.1244
(0.0243)

0.1152
(0.0264)

56 Laughing Kookaburra 0.1894
(0.0326)

0.1517
(0.0251)

0.1507
(0.0220)

0.1818
(0.0267)

78 Noisy Friarbird 0.0352
(0.0174)

0.1022
(0.0241)

0.0837
(0.0194)

0.0818
(0.0216)

Notes: Results are presented for only a small subset of exemplar taxa that highlighted varying
responses to remnant size effects. Species numbers correspond to those in Table 1.

and combinations of landscape context and measured
habitat covariates were examined for 15 species. De-
tection rates for the majority of species examined could
be partly explained by measures of ground and shrub
cover. As an example, the Yellow-faced Honeyeater
was significantly more likely to be recorded on sites
supporting more shrubs (P 5 0.019), increasing cover
of bracken (P 5 0.02), and increasing cover of black-
berry (P 5 0.008). For the Eastern Whipbird, the prob-
ability of detection increased significantly with increas-
ing litter (P 5 0.002) and bracken cover (P 5 0.014),
but decreased significantly with increasing cover of
blackberry (P 5 0.013). Landscape context and be-
tween-year effects remained significant after statisti-
cally adjusting for these factors in the relationships for
both the Yellow-faced Honeyeater and the Eastern
Whipbird.

Other effects

Most species showed higher detection rates in 1997,
when it was wetter than in 1996, and when resources
like nectar may have been more plentiful. A few species
such as Little Raven and Brush Cuckoo, typically with
low detection frequencies, showed the opposite effect.
There was no evidence of spatial dependence in abun-
dance of birds between remnants, both for individual
species and the correspondence analysis scores.

DISCUSSION

Our analyses show a strong contrast in bird assem-
blages between areas of continuous eucalypt forest and
stands of radiata pine. Further, the frequency profiles
of birds change with the area of eucalypt remnant, with
the larger remnants showing similarities to the contin-
uous eucalypt forest and smaller remnants showing
similarities to radiata pine stands. These results are
supported by analyses of selected individual species.
The observed bird distribution patterns can be partly
explained by life history attributes.

Multivariate bird frequency profiles

There was strong empirical evidence for a gradient
in the bird frequency profiles between radiata pine
stands and continuous eucalypt forest. Different pat-
terns in the bird frequency profiles along this contin-
uum encompassed changes in the presence of taxa, and,
given presence, changes in relative abundance. The eu-
calypt remnants provided a link between the two ex-
treme bird frequency profiles, and the nature of this
gradient depended strongly on eucalypt remnant size.
As remnant size increased, the bird assemblage was
increasingly like that characteristic of continuous eu-
calypt forest and less like the surrounding radiata pine
stands. This finding was consistent with some previous
investigations, which have shown that taxa in the land-
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scape matrix (here the radiata pine stands) will often
also be those typical of habitat remnants (e.g., Blake
1983, Laurance 1991). However, our results clearly
showed that as the size of the remnants increased, many
species (although not all) typical of continuous areas
of native eucalypt forest were detected. A plausible
reason for this is that more resources were provided by
increasingly large eucalypt remnants, which enabled
species to occupy them in abundances more charac-
teristic of the continuous eucalypt forest.

A further interesting result was the convincing evi-
dence of a gradient in bird profiles within the radiata
pine plantation, which was related to the extent of na-
tive eucalypt forest close to pine sites. Isolated pine
sites had a ‘‘uniquely’’ pine profile, whereas those sur-
rounded by large areas of eucalypt tended to have bird
profiles more like those of small-to-intermediate eu-
calypt fragments.

Bird responses to landscape context and remnant size
could, in part, be explained by bird life history attri-
butes. Other authors have suggested that there may be
relationships between life history attributes and land-
scape change (Hansen and Urban 1992), a hypothesis
consistent with our findings. We found evidence of re-
lationships between foraging guilds (as assigned by
Mac Nally 1994) and the radiata pine vs. eucalypt forest
landscape context effects. Birds that foraged on bark
substrates (e.g., bark probers and wood searchers), fo-
liage-gleaning taxa, nectivores, and granivores be-
longed to foraging guilds detected significantly more
often in eucalypt forest than in radiata pine. Example
taxa include Red Wattlebird, Striated Pardalote, Yel-
low-faced Honeyeater, Eastern Spinebill, and Leaden
Flycatcher. Stands of exotic softwood lack many of the
key food resources required by Australian birds. These
food resources include flowers, nectar, pollen, and fruit
as important dietary items, as well as strips of decor-
ticating bark and other bark types, and litter accumu-
lations that form microhabitats for insect prey and are
also absent from softwood stands (Ahern and Yen 1985,
Loyn 1985). The European Goldfinch, European Black-
bird, and Eastern Whipbird were detected more often
in radiata pine (Table 2). Two of these species are
ground carnivores (sensu Mac Nally 1994), a foraging
guild more strongly associated with radiata pine stands.

Species that had a greater maximum nesting height
were more likely to occur in eucalypt forest than in
radiata pine, but this outcome is difficult to explain
unless it may have been a surrogate for some other
attribute of bird life history, such as the use of hollows.
However, we did not find significant effects of nest type
or other life history attributes. Alternatively, birds that
typically locate their nests high above the ground may
be precluded from doing so in stands of radiata pine
because of branching patterns unsuitable for support of
nesting sites in fast-growing and/or regularly thinned
stands.

Differences in bird profiles associated with the con-

trast between patch-shaped and strip-shaped remnants
(the second dimension of correspondence analysis)
could be also partly attributed to several life history
attributes. Birds more often detected in the patch-
shaped eucalypt remnants tended to be smaller, pro-
duced smaller clutches, and were more likely to be
migratory. In addition, these birds were more likely to
have cup nests or burrows. Patch-shaped eucalypt rem-
nants often did not contain watercourses or riparian
vegetation that typically support high bird populations,
as shown in other studies (e.g., Recher et al. 1980).
Hence, there may have been insufficient resources to
support larger species (Recher et al. 1987b). Smaller
bird species, which tend to have smaller home ranges
(Schoener 1968), were the ones most likely to be re-
corded in the patches. Basic population dynamics the-
ory also would predict that small species with smaller
home ranges would reach higher population densities
and, in turn, would be less likely to suffer localized
extinction.

Detection rates of migratory birds were higher than
those of nonmigratory taxa in the patches. Strip-shaped
remnants were elongated sites that were often isolated
from other remnants by only relatively small areas of
radiata pine. Conversely, patch-shaped remnants were
surrounded by extensive stands of radiata pine forest.
Migratory birds, which are capable of moving over
prolonged distances, including areas that may be large-
ly unsuitable, may be more likely to colonize semi-
isolated patches than are residents. Other studies have
shown differences between the responses of migratory
and nonmigratory bird species to fragmentation, al-
though the responses of the different groups are not
consistent between studies (e.g., Schmiegelow et al.
1997, cf. Bender et al. 1998).

Landscape context effects were consistent across the
two years of observation, despite differences in the
overall counts between years. Large differences were
recorded in detection rates in 1996 and 1997, not only
for the bird assemblage per se (Fig. 6), but also for
individual taxa. Between-year effects were expected,
given that 1996 was a particularly dry autumn and win-
ter, and resources such as nectar production, which are
important for a range of taxa, would have been depleted
in that year. In contrast, 1997 was much wetter (Bureau
of Meteorology, unpublished data), as reflected by the
higher rate of detection of many species, particularly
honeyeaters such as the Red Wattlebird, Yellow-faced
Honeyeater, and Noisy Friarbird. Other authors have
demonstrated large between-year effects among pop-
ulations of Australian birds (e.g., Egan et al. 1997). It
is possible that the highly significant between-year dif-
ferences in our study were influenced by the influx of
partially nomadic taxa. However, our analysis identi-
fied large differences for a large majority of the species
at Tumut, including both sedentary and nomadic taxa.
It is also possible that nomadic species may have re-
sponded differently to the landscape mosaic then more
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sedentary taxa, e.g., by being able to use resources in
many different eucalypt remnants. However, we found
no evidence for such differences in our study: both
nomadic and sedentary species contributed to changes
in the bird frequency profiles observed across the gra-
dients in landscape contexts and remnant sizes.

Statistical models for the probability of occurrence
of many bird species included not only landscape con-
text effects and between-year differences, but also at-
tributes of vegetation cover, particularly of the under-
story and ground layers. These results provide good
evidence of multiscale influences on species distribu-
tion patterns at Tumut; that is, influences at a landscape
scale (e.g., forest type and remnant shape) and at a
microscale (e.g., vegetation structure).

Species richness

On average, there were 6.4 more species recorded in
continuous eucalypt forest sites than in sites in radiata
pine. These findings are consistent with other studies
in native (eucalypt) hardwood and exotic softwood for-
ests in Australia, which show that the number of ver-
tebrate taxa is lower in radiata pine forest than in native
forest (e.g., Suckling et al. 1976, Friend 1982, Smith
1982). Although statistically significant, the difference
that we found between these two broad forest types
was smaller than expected, particularly because other
workers have shown that radiata pine forests support
a depauperate bird fauna. The relatively large number
of bird species in radiata pine in our study was inter-
esting. Our results are not related to the occurrence of
exotic taxa, because only two were consistently re-
corded in radiata pine stands (European Blackbird and
Goldfinch; see Table 1). They are also not related to
the presence of occasional eucalypt stems in radiata
pine stands, which has influenced outcomes in other
studies (Recher et al. 1987a). Plantation forests in our
study area were relatively ‘‘pure’’ as a result of exten-
sive, recurrent harvesting by heavy logging machinery
over a prolonged period (up to 65 years). Some birds
with breeding territories in the eucalypt remnants may
forage in the pines, contributing to the number of birds
seen there. It is also possible that the presence of many
species of native birds in the radiata pine stands is
related to the landscape being a mosaic of eucalypt
remnants surrounded by plantation forest. Strong evi-
dence for this comes from the relationships between
the bird frequency profile scores and the amount of
native vegetation surrounding the radiata pine sites.
Isolated sites had a uniquely pine profile, whereas the
profiles of radiata pine sites where the surrounding veg-
etation contained a large amount of native vegetation
were more akin to those of small- and intermediate-
sized eucalypt remnants. Therefore, some species of
birds may not persist in the radiata pine landscape with-
out the resources provided by the neighboring eucalypt
remnants. Results of our study showed that eucalypt
fragments of all sizes and shapes have conservation

value, not only because they contain many native spe-
cies of birds, but also because they increase native bird
populations in nearby radiata pine plantations.

The large number of species occupying areas of rem-
nant eucalypt forest, even relatively small remnants,
was surprising. The number of species increased lin-
early with the log of remnant area, and this effect was
more pronounced in patch-shaped than in strip-shaped
remnants. Birds present in a remnant may not breed
there (Temple and Cary 1988), or may be susceptible
to high rates of nesting failure (Robinson et al. 1995).
Therefore, occurrence may be a misleading indicator
of habitat suitability (Van Horne 1983). However, our
data strongly suggest that many species of birds use
the eucalypt remnants, and other recent field obser-
vations of nesting (D. B. Lindenmayer and R. B. Cun-
ningham, unpublished data) indicate that they suc-
cessfully breed in them.

Our data show increasing species richness with in-
creasing eucalypt remnant area. Connor and McCoy
(1979) believed that there were at least three (and pos-
sibly more) explanations for such species–area rela-
tionships that are commonly observed in ecology (Pres-
ton 1962; reviewed by Rosenzweig 1995). These ex-
planations were: (1) increasing habitat diversity with
increasing area; (2) higher population sizes and thus
lower extinction rates, leading to more species in larger
areas; and (3) passive sampling in which larger areas
contain larger ‘‘samples’’ with more species than small-
er areas.

Connor and McCoy (1979) noted that all three mech-
anisms may apply in any given location; direct exper-
imentation is needed to test the plausibility of each
hypothesis. At Tumut, the area of both the radiata pine
matrix and the continuous eucalypt forest is very large
relative to that of the eucalypt remnants. However, the
number of species in continuous eucalypt forest or ra-
diata pine plantation is not vastly different from the
number of species recorded in eucalypt remnants. Thus,
it appears very unlikely that passive sampling is a key
mechanism influencing the patterns that we have ob-
served.

Species response and fragmentation theory

The increased probability of occurrence of some spe-
cies in larger remnants is commonly observed in ecol-
ogy; these areas may contain more suitable habitat and/
or larger, less extinction-prone populations. In contrast,
the preference of some species for small remnants is a
rare finding in ecology. The lack of predators and/or
competitors in small remnants (Ogle 1987), a prefer-
ence for edge habitats (Paton 1994), the prevalence of
generalist taxa (Gascon and Lovejoy 1998), and/or the
ability to persist in the surrounding radiata pine land-
scape matrix (Estades and Temple 1999) may have con-
tributed to the greater probability of occurrence of
some taxa in smaller eucalypt remnants. The preference
of some taxa for intermediate-sized eucalypt remnants
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is interesting. We are not aware of a similar result being
reported in other fragmentation studies. It is possible
that limited resources within small remnants may pre-
clude some area-sensitive birds, whereas medium-sized
remnants contain suitable food and shelter, but at in-
sufficient levels for potential predators and/or com-
petitors. Such birds may then be excluded in still larger
remnants by these predators and/or competitors.

Our findings clearly demonstrate that the responses
of birds to landscape cover and habitat fragmentation
are more diverse and complex than previously recog-
nized. Some of the theoretical developments for pre-
dicting species responses to fragmentation have come
from modified agricultural landscapes, and may not
fully apply in a heterogeneous forest mosaic where the
surrounding matrix is not wholly inhospitable (e.g.,
Sisk et al. 1997, Tocher et al. 1997, Gascon and Love-
joy 1998, Estades and Temple 1999).

Because many species were distributed across the
different landscape components at Tumut at different
frequencies, they did not appear to be behaving as pop-
ulations of interconnected subpopulations or classic
metapopulations (sensu Hanski and Simberloff 1997)
with particular taxa restricted only to a ‘‘mainland’’
(here, the continuous eucalypt forest) or to eucalypt
remnants or specific types of remnants. Instead, the
radiata pine ‘‘matrix’’ surrounding the remnants pro-
vided at least some suitable or partially suitable habitat,
a distribution pattern more akin to the variegated land-
scape concept developed by McIntrye and Barrett
(1992). This conclusion is supported by our finding of
no evidence of spatial dependence in the distribution
of any bird species across the remnants in our study.
Patterns of spatial correlation would be expected to
occur if traditional metapopulation processes were oc-
curring (Hanski 1998, Koenig 1998) and eucalypt rem-
nants remote from other large remnants or continuous
eucalypt forest remained unoccupied. Several possible
factors may account for the lack of spatial dependence
in our data. First, the fragments of remnant vegetation
at Tumut may themselves be distributed in a random
fashion throughout the landscape, and bird distribu-
tions associated with them may similarly be randomly
distributed. Second, it is possible that bird species at
Tumut simply do not exhibit patterns of spatial depen-
dence per se, either in a network of eucalypt remnants
or in an unfragmented spatial setting. Third, the radiata
pine landscape matrix may provide suitable forest cov-
er to eliminate gap-crossing problems for birds (see
Dale et al. 1994). This may allow birds to readily move
and disperse between eucalypt remnants.

The assemblage patterns observed at Tumut cannot
be adequately explained by nested subset theory (Pat-
terson 1987), in which new taxa would be added to an
original (minimal) assemblage of birds in an ordered
and progressive fashion in response to increasing rem-
nant size. Some species occurred almost exclusively in
the radiata pine sites or the eucalypt remnants, and were

virtually absent from large, continuous areas of euca-
lypt forest. Features of the assemblage patterns that
were inconsistent with nested subset theory are as fol-
lows: (1) many species were found in all landscape
contexts; (2) there was some exchange (rather than an
accumulation) of species along a well-defined gradient
between radiata pine forest and continuous eucalypt
forest; (3) there was a marked difference in the relative
frequencies of individual species in the mix of bird
species (bird frequency profiles) along the gradient be-
tween radiata pine stands and large, continuous areas
of eucalypt forest; and (4) there was strong evidence
of a relationship between bird frequency profiles and
life history attributes. In the extensive literature on
assembly rules (see Belyea and Lancaster 1999), there
is no obvious mechanism that would account for these
patterns.

Implications for the management of remnant native
vegetation and plantation design

Information on the use of remnant patches of eu-
calypt forest by diurnal birds is valuable, because large
areas of new softwood plantation will be established
in southeastern Australia over the next decade (De-
partment of Primary Industries and Energy 1997). Eco-
logical insights are needed to guide their development.
Forest management agencies are now looking for cri-
teria and indicators of sustainability (including wildlife
conservation) within plantation forests (State Forests
of New South Wales 1998) and codes of plantation
establishment practice are presently being drafted
(NSW Department of Land and Water Conservation,
unpublished document).

Plantation expansion will take place on semi-cleared
grazing lands that currently support areas of remnant
eucalypt vegetation. These developments will require
important decisions relating to the clearing and reten-
tion of remnants for these landscapes to retain value
for wildlife. Key questions for conservation manage-
ment and ecologically sensitive plantation design in-
clude the following. What types of remnants should be
exempt from clearing during the establishment of ra-
diata pine plantations? What size and shape should
patches of retained native vegetation be? Where should
such areas be located?

This investigation demonstrated that eucalypt rem-
nants, even when surrounded by extensive stands of
exotic softwood radiata pine trees, supported many spe-
cies of birds (on average, ;21 species, of which only
two were exotics). Data on species richness, bird fre-
quency profiles, and individual species indicated that
both patch-shaped and strip-shaped eucalypt remnants
could make an important contribution to the persistence
of avifauna. Thus, eucalypt remnants should not be
cleared as part of radiata pine plantation establishment.
The number of bird species increased linearly with the
log of remnant area (particularly in the case of patch-
shaped remnants). Larger patches (which support more
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species) should be given highest priority for retention
during plantation establishment. However, even rela-
tively small remnants were surprisingly species rich
and supported many native bird taxa. Not all species
occur in such remnants, and populations of some taxa
that presently occupy them may not be viable in the
long term (although some small remnants in this study
still supported a relatively rich native bird fauna 65 yr
after isolation). Nevertheless, we argue that small and
intermediate eucalypt remnants (including those as
small as 1 ha) also have conservation value and should
not be cleared simply because they are not large. The
retention of eucalypt remnants within the plantation
estate will create a more complex landscape mosaic
than a simplified monoculture of exotic radiata pine
forest, and this will have positive benefits for the con-
servation of bird communities at a landscape scale
(Recher et al. 1987b). A radiata pine plantation land-
scape devoid of eucalypt remnants would support a
very different (and more depauperate) bird assemblage
than one that is a mosaic of native and exotic forest.
Thus, the eucalypt remnants may contribute to the land-
scape heterogeneity (sensu Forman 1995) in the plan-
tation estate, with potentially positive benefits for bird
communities at a landscape scale. This should be taken
into account as part of the design specifications for the
establishment of future radiata pine plantations.
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Abstract

The design of a longitudinal landscape-scale ‘‘natural experiment’’ of Australian woodland vertebrates is described. The experi-
ment will allow the direct study of changes in fauna inhabiting woodland fragments as the surrounding grazed landscape is trans-
formed into a radiata pine (Pinus radiata) plantation. It will also provide data to enable the study of relationships between fauna

and habitat and landscape variables, both over time and among sites. Data for terrestrial mammals, arboreal marsupials, and rep-
tiles occurring in woodland remnants surrounded by newly planted radiata pine seedlings and pasture are presented. These data
provide a reference set against which future changes in vertebrate fauna can be assessed and hence will be baseline data for the

longitudinal study. Statistical analyses for several species showed that arboreal marsupials are more likely to be found in larger
remnants that contain more trees with cavities and the four-fingered skink (Carlia tetradactyla) is more likely to be found either
where there are more exposed rocks or more dead trees. We predict that these responses will change as the surrounding landscape
matrix is transformed, particularly for arboreal marsupials such as the common ringtail possum (Pseudocheirus peregrinus), a

species for which stands of radiata pine will provide suitable or partially suitable habitat. # 2001 Elsevier Science Ltd. All rights
reserved.

Keywords: Longitudinal study; Cross-sectional experiment; Arboreal marsupials; Small mammals; Reptiles; Landscape matrix; Remnant woodland

vegetation; Softwood plantation establishment; South-eastern Australia

1. Introduction

In his seminal text on landscape ecology, Forman
(1995) recognized three landscape components — pat-
ches, corridors and the matrix. Patches and corridors
are typically either the remnants of the original vegeta-
tion cover in a landscape, or areas that have been
restored to some state of ‘‘naturalness’’. In landscapes
extensively modified by humans, patches and corridors
areas have often been termed ‘‘habitat fragments’’
(Schwartz, 1997). Forman (1995) defined the third
landscape component, the matrix, as ‘‘the background
ecosystem or land-use type in a [landscape] mosaic,
characterized by. . . a major control over dynamics’’.

The vast majority of fragmentation studies in the past
three decades have focussed on the biota of habitat
fragments and many have largely ignored the sur-
rounding landscape matrix (reviewed by Crome, 1994,
1997). Yet, an increasing number of investigations are
demonstrating that the dynamics of populations within
habitat fragments are strongly influenced by conditions
in the landscape matrix which surround them (e.g.
Laurance, 1991; Estades and Temple, 1999). For exam-
ple, the Biological Dynamics of Forest Fragments Pro-
ject in Brazil has consistently highlighted the important
role of the landscape matrix in fragmentation effects
(Tocher et. al., 1997; Gacon et al., 1999). Other studies
have produced similar outcomes (e.g. Webb et al., 1984;
Aberg et. al., 1995; Sisk et. al., 1997). For example, a
number of investigations have demonstrated that many
species which persist in habitat fragments are also those
which occur in the surrounding landscape matrix
(Blake, 1983; Diamond et al., 1987; Ås, 1999).

0006-3207/01/$ - see front matter # 2001 Elsevier Science Ltd. All rights reserved.

PI I : S0006-3207(01 )00061-1

Biological Conservation 101 (2001) 157–169

www.elsevier.com/locate/biocon

* Corresponding author. Tel.: +61-624-94588; fax: +61-2624-

90757.

E-mail address: david.lindenmayer@anu.edu.au (D.B. Linden-

mayer).

59



Given the fundamental importance of the landscape
matrix as a landscape component (Forman, 1995), we
have commenced a large-scale ‘‘natural experiment’’
designed specifically to quantify how wildlife use of
habitat fragments changes as the surrounding landscape
changes. This paper describes the design of this study
which has the defining feature that repeated observa-
tions are taken on individual sites enabling the direct
study of change. This natural experiment is called the
Nanangroe Study and it focuses on a grazed woodland
landscape near Jugiong in south-eastern New South
Wales, southern Australia. Most fragmentation experi-
ments have examined habitat fragments before and after
clearing of the surrounding vegetation (e.g. Margules,
1992; Bierregaard and Stouffer, 1997). In contrast, in
the Nanangroe Study, the landscape is already largely
cleared of native vegetation and it now supports only
fragments of the original cover of eucalypt woodland.
The landscape surrounding the woodland fragments is
undergoing a major and rapid transition from one that
is largely cleared and dedicated to grazing domestic
livestock, to one that will be dominated by extensive
plantations of radiata pine (Pinus radiata) trees. We
have taken advantage of these changes to design a large-
scale longitudinal study to track the changes that occur
in vertebrate fauna inhabiting woodland remnants when
the surrounding landscape undergoes extensive change
from a grazing one with isolated paddock trees to a
plantation-dominated system.
The use of natural experiments to address ecological

questions is an attractive idea, but it is often argued that
meeting fundamental statistical criteria of experimental
design is prohibitive in resources and hence cost. It
often follows that unreplicated experiments are pro-
moted as a useful alternative (Dunning et. al., 1995).
This is often done without a clear understanding of the
implications of such ‘‘experiments’’ for inference; these
are not experiments and should never be treated as such.
The inferential value of large-scale field experiments

in ecological and environmental research is well accep-
ted (Robinson et al., 1992; Schmiegelow and Hannon,
1993; Margules et al., 1994). For example, we recently
reported the findings of a large-scale cross-sectional
‘‘natural’’ experiment in south-eastern Australia
designed specifically to measure the effects of landscape
context and habitat fragmentation on forest fauna
(Lindenmayer et al., 1999a, b, 2001). That study, called
the Tumut Fragmentation Experiment, demonstrated
that it is possible to meet replication and randomisation
requirements for natural experiments in fragmentation
studies. A summary of important design principles of
the cross-sectional study at Tumut is given in Linden-
mayer et al. (1999a, b, 2001). Clearly, an essential
ingredient of these natural experiments is careful plan-
ning and a willingness to commit substantial resources
to successfully complete them.

In our earlier cross-sectional study at Tumut, only
scant information was available on animal abundance
when landscape disturbance commenced. Lack of
knowledge of the status of species prior to fragmenta-
tion is a common feature of almost all fragmentation
studies (Margules, 1992). Often, interest is in the direct
study of temporal changes and relationships that occur
as a result of intervention. In these cases, longitudinal
studies are important as they can distinguish variation
and co-variation in fauna over time from variation and
co-variation in fauna among sites. Further, they provide
data to enable the estimation of the change over time in
fauna per unit change in habitat and/or landscape vari-
ables. In cross-sectional studies, temporal and between
site effects cannot be separated. Effects and relation-
ships in cross-sectional studies may be obscured due to
considerable variation among sites but can be discerned
from data obtained in longitudinal studies. This is
because each site becomes its own control, and hence,
such studies tend to be more powerful for studying
change than cross-sectional studies.
There are important reasons why we have chosen a

woodland system for detailed study. Woodlands
throughout Australia have been heavily modified since
white settlement and between 70–95% of them have
been cleared in States like New South Wales (NSW;
Yates and Hobbs, 1997; Hobbs and Yates, 2000). In the
case of particular vegetation types such as white box
(Eucalyptus albens), only a tiny fraction of the original
levels of cover remain (Prober and Thiele, 1995). In
addition, many woodlands are highly degraded as a
result of human disturbance such as livestock grazing,
tree removal (e.g. for firewood), and mining (Hobbs and
Yates, 1997; Arnold andWeeldenburg, 1998). Clearing of
woodlands and their ongoing degradation has had a
negative impact on groups such as plants (Yates et al.,
2000), invertebrates (Abensperg-Traun and Smith, 1999),
reptiles (Hadden and Westbrooke, 1996), birds (Barrett
et. al., 1994; Read, 1999), and mammals (Deacon and
Mac Nally, 1998). Major efforts to conserve and restore
Australian woodland ecosystems have commenced, but
such work depends in part, on understanding what fea-
tures are critical for biota (Saunders et al., 1993). There
is limited information of this sort for the vast majority
of Australian woodlands. Hence, in addition to out-
lining the design of the Nanangroe natural experiment,
we also present data on terrestrial mammals, arboreal
marsupials, and reptiles gathered from field surveys of
remnant woodlands within a grazed woodland system.
This information serves as baseline data for the long-
itudinal study. It also characterizes fauna occupying
small woodland remnants at the time of establishing a
radiata pine plantation in the surrounding landscape.
Finally, we also report statistical models of the rela-
tionships between the occurrence of a selected set of
animals and woodland habitat variables.
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2. Methods

2.1. Study area

The study area is 10–20 km south-east of the town
of Jugiong in southern NSW (Fig. 1), and it is bounded
by the Murrumbidgee River to the north and the
Bungongo State Forest, 5–8 km to the south and east.
Annual precipitation across the study area ranges from
775 to 900 mm and is uniformly distributed throughout
the year. Summers are typically hot. The name of the
field study is taken from the Nanangroe Station — a
large property where a major new radiata pine plantation
has recently been established. The study region was
chosen because:

(1) recent large-scale changes in landscape cover

have occurred due to the establishment of new
radiata pine plantations at four former grazing
properties newly acquired by State Forests of
NSW;

(2) long-term access to semi-cleared grazing proper-
ties which support numerous woodland remnants
and which are located adjacent to the new
Radiata Pine plantation has been obtained;

(3) the region contains a wide range of woodland
vegetation types (see later). This will allow us to
quantify the differences in fauna between differ-
ent types of woodland. This makes our natural
experiment different from many other studies
that have focussed on one or only a few wood-
land types (e.g. Er, 1995; Prober and Thiele,
1995; Haddeon and Westbrooke, 1996; Arnold
and Weeldenberg, 1998); and

Fig. 1. The general location of the study area encompassed by the Nanangroe Study. Nanangroe detail is shown in Fig. 2.
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(4) the woodland remnants in the study region vary
in their physical condition, location (hilltops ver-
sus midslopes, etc.), and many other attributes
(Table 1) making it possible to sample a broad
range of environmental conditions and, in turn,
model the relationships between species occur-
rence and these covariates.

The original vegetation cover in the study area
included a suite of woodland vegetation types, parti-
cularly those dominated by yellow box (Eucalyptus
melliodora), red box (Eucalyptus polyanthamos), white
box (Eucalyptus albens), red stringybark (Eucalyptus
macrorhycha), and Blakely’s red gum (Eucalyptus blak-
leyii). Much of the original cover has been cleared over
the past 150 years, primarily for domestic stock grazing
(Bungongo Centenary Committee, 1986). Only frag-
mented patches now remain of what was formerly con-
tinuous woodland vegetation cover.
Clearing operations to plant radiata pine in the areas

surrounding the woodland remnants involves the felling
and burning of isolated paddock trees and other
shrubby vegetation. The cleared land is then deep-rip-
ped with a bulldozer to create mounds of earth in which
radiata pine seedlings are planted. These are standard
plantation establishment procedures employed widely
throughout south-eastern Australia.

2.2. The design of the Nanangroe study

The principle objective of the Nanangroe study is to
directly quantify changes in woodland vertebrate assem-
blages and their relationships with habitat variables
when the surrounding landscape matrix is converted
from a semi-cleared grazing landscape to a landscape
dominated by an exotic softwood plantation. Thus, the
initial phase of the experiment is the establishment of a
set of foundation sites. This involved characterizng all
patches of remnant native vegetation on areas desig-
nated for pine plantation. Attributes of the 70 remnants
included patch size (ha), dominant tree species, age and
condition of overstorey trees, understorey condition,
shape class, topographic position, and the density of
trees within the patch. Patch sizes varied from 0.5 to 9.7
ha. Four broad vegetation classes were recognizd as
part of field surveys. The species in these groups were:

(1) red box and red stringybark (co-dominant), apple
box (Eucalyptus bridgesdiana), long-leaf box
(Eucalyptus goniocalyx), and broad-leaved pep-
permint (Eucalyptus dives);

(2) swamp gum (Eucalyptus camphora);
(3) yellow box, white box, red stringybark (co-domi-

nant) and Blakely’s red gum; and
(4) river oak (Allocausarina cunninghamiana).

Table 1

Measures of the vegetation structure and plant species composition recorded in the study

Variable Description

Dominant tree The dominant species of trees in a remnant (identified from buds and fruits Costermans, 1994)

Stand basal area Measured in m2 per ha using a basal area wedge

Topography The topographic position of a site, in one of six categories: flat, gully, north-facing slope,

east-facing slope, south-facing slope, and west-facing slope

Disturbance Evidence of disturbance was recorded and classified as mining, grazing, fire, logging, other and none

Dieback index Evidence of dieback among dominant trees was recorded (e.g. crown and/or lateral branch death)

Number of dead trees The number of dead trees per vegetation plot was recorded

Mistletoe index The number of clumps of mistletoe in each vegetation plot was recorded

Hollow trees The abundance of trees with bayonet and branch hollows (sensu Jacobs, 1955) was recorded

Slope angle The inclination of a plot measured using a clinometer

Rock Index A rock cover index (= the quantity of exposed rock) was recorded for each plot as one of six classes:

none, 1–5, 5–15, 15–30, 30–60, and >60%

Ground cover The% cover of the ground layer was assigned to one of six classes: none, 1–5, 5–15, 15–30, 30–60, and >60%

Number logs The number of logs in each diameter classes was recorded (10–20, 20–30, 30–40, 40–50 and >50 cm)

Dominant cover The% cover of dominant trees was recorded as one of six classes: none, 1–5, 5–15, 15–30, 30–60, and >60%

Sub-dom. cover The% cover of sub-dominant plants was recorded as one of six classes: none, 1–5, 5–15, 15–30, 30–60, and >60%

Shrub cover The% cover of shrubs was recorded as one of six classes: none, 1–5, 5–15, 15–30, 30–60, and >60%

Grass index The% cover of grass was recorded as one of six classes: none, 1–5, 5–15, 15–30, 30–60, and >60%

Grass height The height of the grass (m) was measured

Blackberry index An index describing the prevalence of introduced Rubus fruticosus scored from none to 100% each six categories

in each of 20% intervals

Regrowth index An index describing the extent of young regrowth vegetation in each plot (from a score of 1–4)

Plant matrix A two-way height and diameter matrix was completed for each plot. Each stem in the plot was assigned by

one of five height and seven diameter classes. The height categories were 1–2, 2–4, 4–8, 8–16, 16–30, and > 30 m.

The diameter classes were: 1–5, 5–10, 10–20, 20–30, 30–40, 40–50, and > 50 cm

Stream index A measure of the‘‘moistness’’ of a site calculated from information on the distance to a watercourse and stream

order (sensu Strahler, 1957)
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These groupings were based on forest league classifi-
cations developed by Forests Commission of New
South Wales (1989).
Fifty of a possible 70 woodland remnants >0.5 ha were

randomly selected, with stratification, for study. This gave
13 remnants in the 0.5–0.9 ha class, 20 remnants in the 1–
2.4 ha size class, 15 remnants in the 2.5–4.9 ha class, and
two remnants in the 5–10 ha class. The extent of previous
clearing to promote livestock grazing meant few large
remnants were available for subsequent selection and
sampling. The number of remnants in the broad tree
species groupings were: 19 sites in Vegetation Group 1;
eight in Group 2; 19 in Group 3; and four sites in Group
4. A subsection of the study area is shown in Fig. 2.
Three age cohorts of recently planted stands of

radiata pine presently occur in the study area; trees
established in 1998 (cohort 1; Fig. 3), trees established
in 1999 (cohort 2), and a final round of plantation
establishment completed in mid-2000, giving a third age
cohort (cohort 3). Pine age cohort 1 surrounds 21
woodland remnants, cohort 2 surrounds 15 remnants,
and there are 14 remnants in cohort 3. Having three
radiata pine age cohorts in our study will allow the
estimation of effects due to cohort and year.
For comparison with the 50 woodland remnants sur-

rounded by radiata pine, an additional 56 woodland
remnants on semi-cleared, private grazing properties

adjacent to the new plantation estate were randomly
chosen for study. The 56 remnants were matched to the
50 remnants in the plantation estate on the basis of
patch size and dominant vegetation type to ensure that
the two groups of remnants were as similar as possible.
Finally, 10 permanent sites in cleared paddocks around
the woodland remnants on the grazing properties and
ten sites in areas dominated by newly planted radiata
pine trees were established as ‘‘landscape matrix’’ sites’
(Fig. 4).
In summary, 126 sites were chosen for study within the

four different ‘‘landscape context classes’’. These were:

(1) woodland remnants where the surrounding graz-
ing land has been converted to stands of radiata
pine (50 -sites) in the 3 years, 1998–2000, inclusive;

(2) newly planted stands of radiata pine trees that
surround the 50 woodland remnants (10 sites);

(3) woodland remnants located on semi-cleared areas
within the variegated landscape matrix where the
primary land use is grazing by domestic livestock
(sheep [Ovis ovis] and cattle [Bos taurus]; 56 sites);
and

(4) cleared paddocks that surround the 56 woodland
remnants (10 sites)

Each of the 126 sites was marked with coloured flag-
ging tape and plastic cattle tags. Star pickets were then

Fig. 2. A subset (see Fig. 1) of the woodland remnant sites surveyed in the Nanangroe Study.
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used to highlight the 0, 50, 100, 150, and 200 m points
along each marked transect. Data from all 126 sites will
be collected at regular intervals over at least the next
10+ years.

2.3. Data and field sampling protocols

The foundation year for collecting data was 1998
when surveys were undertaken for diurnal birds (results
to be reported elsewhere), arboreal marsupials, small
mammals, and reptiles (see later). Spotlighting surveys
were undertaken at each of the 126 sites for arboreal
marsupials. Data recorded were the number of each
species of arboreal marsupial seen.
Two methods were employed to sample terrestrial

mammals; hairtubing (sensu Scotts and Craig, 1988)
and Elliott trapping. One Elliott trap and the three
types of hairtubes were set out at nine points, 25 m
apart, along the transect established at each site. Traps
were cleared each day for five successive days. Animals
captured were marked, sexed and weighed.
Two sample points for reptiles were established at

the 0 and 100-m mark at the 126 survey sites.
These sample points were constructed from three
distinct types of artificial habitats placed on the
ground for use by reptiles: three overlaid sheets of
corrugated iron measuring 1�2 m, four 1 m long
mountain gum (Eucalyptus dalrmypleana) fence posts
joined with chicken wire, and four standard roof tiles.
The number and identity of each species of reptile shel-
tering under these artificial habitats at each survey site
was recorded.
Vegetation plots measuring 10�10 m in size were

established at the 0, 50, 100, 150, and 200 m points
along the marked transect at each site. The measures
recorded at each plot are summarised in Table 1. In
addition, permanent photographic points were estab-
lished at the 0 m and 100 m points along each transect,
providing an extensive library of images of vegetation
cover and structure for each field site.

2.4. Statistical analysis

For spotlighting data (arboreal marsupials), trapping
data (small mammals), hairtubing data (terrestrial
mammals and arboreal marsupials), and reptile counts,
summary tables provide numbers of woodland rem-
nants where particular species were recorded. Logit
regression modelling (Collett, 1991) was used to assess
differences in fauna among the sites in the four different
landscape context classes and to explore relationships
between the occurrence of selected arboreal marsupial
and reptile species and woodland attributes.

3. Results

3.1. Small mammals, terrestrial mammals and arboreal
marsupials — detection by hairtubes

As virtually no animals had been detected or captured
in the initial 81 sites surveyed by hairtubing and Elliott
trapping, counts of small mammals and terrestrial
mammals were terminated before all sites were sur-
veyed. All 50 woodland remnants in the radiata pine
landscape were surveyed, but only 20 of the 56 wood-
land sites on private grazing lands were sampled. No
animals were detected in the six radiata pine sites and
five pasture sites surveyed. Table 2 gives the total num-
ber of detections for each species, together with the
number in remnant woodland sites where at least one
detection was made. As it is not possible to distinguish
between individuals in hairtubing data, total detections
should not be interpreted as abundance. The species
most commonly detected by hairtubing was the com-
mon brushtail possum (Trichosurus vulpecula). This
result was consistent with spotlighting data (see later).
The species was recorded by hairtubing on 16 of 70
remnants (=22% approximately) compared to 23 of
106 sites surveyed by spotlighting (=22% approxi-
mately).

Fig. 3. Photograph of woodland remnant NAN28 (Table 2) surrounded by stands of radiata pine (Pinus radiata) trees planted in 1998.
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Despite extensive effort, only one native species —
agile antechinus (Antechinus agilis; four animals on
three sites; Table 3) was captured by trapping. The
most commonly trapped small mammal was the exo-
tic house mouse (Mus musculus); a species which was
not detected by hairtubing. The exotic black rat (Rattus
rattus) was captured during field surveys, but records
were uncommon (Table 3). The trapping results for
small mammals were broadly consistent with hairtubing
data.

3.2. Arboreal marsupials — detection by spotlighting

Three species of arboreal marsupials were detected by
spotlighting of all 126 sites — common brushtail pos-
sum, sugar glider (Petaurus breviceps), and common
ringtail possum (Pseudocheirus peregrinus). Table 4
gives the total number of detections for each species,
together with the number of remnant woodland sites
where at least one detection was made. The common
brushtail possum and common ringtail possum were
relatively frequently recorded, whereas the sugar glider
was uncommon.

There was no evidence from our baseline data of a
difference in the probability of occurrence or the abun-
dance of arboreal marsupials between the four different
landscape context classes (as defined earlier). Thus, we
have simply shown aggregate data for the abundance of
animals recorded during field surveys (Table 4).

3.3. Reptile data

Eight species of reptiles were recorded — eastern
three-lined skink (Bassiana duperreyi), marbled gecko
(Christinus marmoratus), four-fingered skink (Carlia
tetradactyla), olive legless lizard (Delma inornata), three-
toed skink (Hemiergis decresiensis), delicate skink
(Lampropholis delicata), garden skink (Lampropholis
guitcheenoti), and Boulenger’s skink (Morethia bou-
lengeri; Table 5). Most species were infrequently recor-
ded (<10 sites), except for the four-fingered skink (25
sites), and the three-toed skink (12 sites). There also
were a small number of incidental captures of Egernia
spp. and red-bellied black snake (Pseudechis porphyia-
cus) in Elliott traps deployed to sample small terrestrial
mammals (Table 3).
There was no evidence from our baseline data of a

difference in the probability of occurrence or the abun-
dance of reptiles between the four different landscape
context classes. Thus, we have simply shown aggregate
data for the abundance of animals recorded during field
surveys (Table 5).

3.4. Relationships between the presence of arboreal
marsupials, the presence of the four-fingered skink, and
remnant woodland characteristics

A summary of statistical relationships between the
expected probability of an arboreal marsupial per se,
the common ringtail possum and the four-fingered
skink and site attributes is given in Table 6–8. All effects
are shown graphically in Fig. 4. Arboreal marsupials
were more likely to occur in larger remnants (P=0.005)
and in remnants havingmore trees with cavities (P=0.01).
In particular, larger woodland remnants (P=0.02),
especially those with a high mean density of living trees
per plot (P=0.002), and supporting numerous hollow-

Table 2

Records of small mammals and terrestrial mammals detected by hair-

tubing for 70 woodland remnants

Common name Species name Total

No. of

sites

recorded

Total

No. of

detections

Domestic cattle Bos taurus 9 17

Swamp wallaby Wallabia bicolor 8 11

Rat species Rattus spp. 3 3a

Antechinus species Antechinus spp. 3 3b

Common wombat Vombatus ursinus 1 1

Echidna Tachyglossus aculeatus 1 1

Feral cat Felis catus 2 2

Red fox Vulpes vulpes 1 1

Common brushtail

possum

Trichosurus vulpecula 16 24

a Most probably the introduced Black Rat (Rattus rattus).
b Most probably Agile Antechinus (Antechinus agilis).

Table 3

Records of small mammals by trapping for 70 woodland remnantsa

Common name Species name Total

No. of

sites

recorded

Total

No. of

animals

captured

House mouse Mus musculus 7 10

Agile antechinus Antechinus agilis 3 4

Black rat Rattus rattus 3 3

Egernia (skink species) Egernia spp. 4 6

Red-bellied black snake Pseuchis porphyiacus 1 1

a Incidental trap records of the skink (Egernia spp.) and Red-bellied

Black Snake (Pseudechis porphyiacus) have been included.

Table 4

Arboreal marsupials recorded in 106 woodland remnants

Common name Species name Total

No. of

sites

recorded

Total

No. of

animals

observed

Common brushtail

possum

Trichosurus vulpecula 23 35

Sugar glider Petaurus breviceps 6 7

Common ringtail

possum

Pseudocheirus peregrinus 23 44
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bearing trees (P<0.001) were significantly more likely
to support the common ringtail possum. Two alter-
native predictors of the presence of the four-fingered
skink were found: the species was more likely to occur
on sites with more exposed rocks (P=0.007), or on sites
supporting more dead trees (P=0.003).

4. Discussion

4.1. Species occurrence and woodland attributes

Remnant area effects were found for various species
of arboreal marsupials in the Nanangroe Study (Table 6,
Fig. 4). Remnant area effects on biota in fragmented
landscapes have been observed in numerous studies
(reviewed by Hanski, 1994). In general, larger areas may
contain more suitable habitat and larger, less extinction-
prone populations. They also might have a higher
probability of containing a ‘‘sample’’ population of a
species at the time fragmentation occurs (Andrén,
1994). Notably, remnant area effects were not found for
common ringtail possum in the Tumut Fragmentation
Study (Lindenmayer et al., 1999a). A plausible expla-
nation for this is that mature stands of radiata pine
surrounding the remnants provide partially suitable
habitat for the common ringtail possum. This is not the
case at Nanangroe where the landscape surrounding the
eucalypt woodlands is largely cleared and unsuitable for
arboreal marsupials.
Studies in forest ecosystems have highlighted the cri-

tical importance of trees with hollows for many verte-
brate taxa (Gibbons and Lindenmayer, 1997;
Soderquist et al., 1998), and our study has confirmed
the value of such trees for arboreal marsupials. In the
case of the common ringtail possum, the results at
Nanangroe support the observation that the species is a
facultative user of hollows. That is, the species appears
to be dependent upon hollows in cold environments
(such as snow gum woodlands [Green and Osborne,
1994]) and relatively warm environments like Nanangroe

and other woodland habitats (Soderquist et al., 1998),
but constructs dreys in temperate climates (How et al.,
1984). Indeed, in the Tumut Fragmentation Experi-
ment where climatic conditions are wetter and more
mesic than in the Nanangroe Study, habitat rela-
tionships for the common ringtail possum did not
include the number of tree hollows (Lindenmayer et al.,
1999a).
The four-fingered skink is terrestrial and is known to

forage around rock outcrops (Cogger, 1998). Fallen
timber also is an important foraging substrate (Jenkins
and Bartell, 1980) and branch shedding from dead trees
may create suitable habitat for the species. It is therefore
not surprising that these factors were found to be sta-
tistically significant predictors of the probability of
occurrence of the four-fingered skink.
An unexpected result of this study was the almost

complete absence of small native mammals in wood-
lands. The entire study area has been subject to pro-
longed intensive grazing for more than a century and
understorey vegetation is limited in many remnants.
Vegetation cover is important for small mammals (Lin-
denmayer et al., 1994; Catling and Burt, 1995) and
grazing may have major indirect effects on these animals
through its impacts on vegetation structure (Yates et al.,
2000).
Activities like clearing, grazing-related degradation

and firewood collection can reduce the size of remnant
woodlands and remove trees with hollows and dead
stems and so reduce the woodland fauna. In woodlands,
large dead trees including many which contain hollows,
are often those selected for firewood collection (Wall,
2000). The emerging pine plantation should limit
human access and so help restore some of the key con-
servation-related features of woodlands. Moreover, as
trees with hollows take a prolonged period to develop
(typically many hundreds of years; Gibbons and Lin-
denmayer, 1997) woodland restoration efforts will need
to be very long-term to replace key habitat attributes
that have been lost as a result of clearing, firewood
harvesting, and other activities.

Table 5

Reptiles recorded at all 126 sites in the Nanangroe Study (incidental records of reptiles captured in Elliott traps are shown in Table 3)

Common name Species name No. of sites recorded No. of animals observed

All sites Woodland

sies only

All sites Woodland

sites only

Eastern three-lined skink Bassiana duperreyi 3 0 5 0

Marbled gecko Christinos marmoratus 1 1 2 2

Four-fingered skink Carlia tetradactyla 25 16 37 26

Olive legless lizard Delma inornata inornata 2 1 3 1

Three-toed skink Hemiergis decresiensis 12 2 14 2

Delicate skink Lampropholis delicata 7 0 17 0

Garden skink Lampropholis guitcheenoti 6 0 8 0

Boulenger’s skink Morethia boulengeri 1 0 1 0
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Fig. 4. (a). Predicted values and the associated 95% confidence intervals for the relationship between the probability of occurrence of any arboreal

marsupial, and, (Part 1) the number of hollow-bearing trees, and, (Part 2) remnant area (ha) (Table 6). (b) Predicted values and the associated 95%

confidence intervals for the relationship between the probability of occurrence of the common ringtail possum, and, (Part 1) the number of hollow-

bearing trees, (Part 2) the mean number of living trees per plot, and, (Part 3) remnant area (ha; Table 7). (c) Predicted values and the associated 95%

confidence intervals for two alternative models for the relationship between the probability of occurrence of the four-fingered skink, and, (Part 1)

exposed rocks, or, (Part 2) the number of dead trees (Table 8).
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4.2. Large-scale natural experiments in wildlife
conservation and forecasts of the response of selected
species to landscape change

Large-scale field experiments are very important in
ecology (Lovejoy et al., 1984; Margules, 1992; Schieme-
gelow et al., 1997) and they can reveal unexpected out-
comes with important implications for biodiversity
conservation (Margules et al., 1994; Dooley and Bowers,
1998; Gascon et al., 1999; Lindenmayer et al., 1999a).
The need for large-scale experiments has particular
relevance in parts of southern Australia because exten-
sive areas will enter another major period of landscape
modification over the next 20–30 years. Large sections
of south-eastern Australia have undergone extensive
clearing in the past 150 years (Walker et al., 1993) to
facilitate the development of grazing industries. Only a
small proportion of the original vegetation cover in
remains in some areas (Benson, 1999). A large number of
domestic livestock and grazing enterprises are now only
marginally profitable, often due to poor management.
Therefore, many areas of semi-cleared grazing lands are
being increasingly targeted for the establishment of

exotic softwood plantations — the plantation estate is
set to treble in the next two decades (Department of
Primary Industries and Energy, 1997). While many
fragmented plant and animal communities are still
responding to widespread clearing instigated many dec-
ades ago, a second phase of landscape change is now
occurring. Many taxa in these areas will be subject to
two major landscape changes in less than 200 years.
Such large-scale changes in such a short period make it
important to track their effects on biodiversity. For
example, if many species have adapted to woodland
fragments surrounded by a predominantly grazed land-
scape, some may be maladapted to a subsequent land-
scape transformation to a predominantly radiata pine
landscape. If this is the case, and species become iso-
lated within woodland remnants surrounded by ‘‘hos-
tile’’ exotic radiata pine forest, then theoretical
extinction models predict that species loss from frag-
ments would be very rapid at the onset of isolation and
the decline, gradual over time (Macarthur and Wilson,
1967; Wilcox, 1978). However, we did not find isolation
time effects on species loss in the Tumut Fragmentation
Experiment and this raises questions about the validity
about such theoretical predictions. Thus, in the Nanan-
groe Study we will be in a position to more closely
observe transitions. As a prelude to this, forecasts of
possible future changes in species occurrence are out-
lined below. These predictions are based on the out-
comes of the cross-sectional study in the Tumut
Fragmentation Experiment 10–30 km to the south of
the Nanangroe Study. For example, it will be interesting
to determine if the effect of the number of live trees in a
eucalypt remnant on common ringtail possum differs as
the radiata pine trees develop in the surrounding land-
scape (Fig. 4). It is plausible that the woodland remnant
size and hollow tree effects will disappear as the sur-
rounding landscape eventually provides suitable or par-
tially suitable habitat for the common ringtail possum.
This predicted change could occur because of the ability
of the species to eat radiata pine needles and make nests
or dreys from such foliage. Hence, animals will no
longer be totally reliant on resources within woodlandTable 7

Parameter estimates and associated standard errors for the relation-

ship between the probability of occurrence of the common ringtail

possum and measured site attributesa

Variable Estimate Standard

error

Constant �5.05 1.12

Log of remnant area 1.05 0.473

Log of number of living trees 1.31 0.473

Presence of cavities 1.44 0.724

Linear effect of log

(No. cavities) given presence

1.46 0.435

a Effects are shown graphically in Fig. 4b. Note the parameterisa-

tion of the cavity effect — an effect due to the presence of cavities and

a linear effect associated with the log of the number of cavities (Fig. 4b,

Part 1).

Table 6

Parameter estimates and associated standard errors for the relation-

ship between the probability of occurrence of an arboreal marsupial

per se and measured site attributesa

Variable Estimate Standard

error

Constant �1.36 0.421

Log of remnant area 0.913 0.341

Presence of cavities 0.448 0453

Linear effect of log

(No. cavities) given presence

0.75 0312

a Effects are shown graphically in Fig. 4a. Note the parameteriza-

tion of the cavity effect — an effect due to the presence of cavities and

a linear effect associated with the log of the number of cavities (Fig. 4a,

Part 1).

Table 8

Parameter estimates and associated standard errors for two alternative

models of the relationship between the probability of occurrence of the

four-fingered skink and measured site attributes (Effects are shown

graphically in Fig. 4c)

Variable Estimate Standard

error

Constant �1.623 0.302

Number of exposed rocks 0.042 0.016

OR

Constant �1.72 0.321

Number of dead trees 0.511 0.194
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remnants for persistence, but rather, may also use
resources available in the surrounding landscape as it
transforms from a grazed one to one supporting a soft-
wood forest. Notably, in an earlier forest fragmentation
and landscape context study, Lindenmayer et al. (1999a)
found the common ringtail possum was significantly
more likely to be detected in remnant vegetation patches
surrounded by radiata pine stands than in similar vege-
tation types located within large continuous areas of
native eucalypt forest. In this case, extra resources cre-
ated at the boundaries of eucalypt remnants and-radiata
pine stands may have elevated population densities
above that observed in continuous eucalypt forest.
Hence, it is possible that sizes of populations of the
common ringtail possum may increase as our natural
experiment at Nanangroe progresses.
The common brushtail possum was absent from

radiata pine stands in our earlier study at Tumut (Lin-
denmayer et al., 1999a), and on the basis of those
results, the species may not be advantaged by the land-
scape change taking place at Nanangroe. In the case of
the sugar glider, which does not inhabit radiata pine
forest, future changes in habitat relationships and
population sizes are also not easy to predict. For exam-
ple, it is possible that the advent of landscape cover
dominated by trees could facilitate the movement of the
species and assist it to reach suitable areas of remnant
woodland. Conversely, if the species is unable to move
through stands of radiata pine, then woodland rem-
nants may become (or remain) isolated for the sugar
glider. The uncertainty in species’ responses makes it
important to gather good data to quantify the changes
that do take place.
Recent work in the Tumut region to the south of the

Nanangroe study area has highlighted the conservation
value of remnant native vegetation embedded within
extensive areas of radiata pine (Lindenmayer et al.,
1999a). The results of that work have stimulated NSW
State Government agencies to better protect native
vegetation as part of plantation establishment. Such
efforts are important because some of the vegetation
types within areas targeted for plantation expansion
have already undergone extensive clearing (e.g. white
box woodlands; Prober and Thiele, 1995). While exist-
ing information suggests that patches of remnant native
vegetation are valuable for wildlife, the impacts on bio-
diversity of changing the landscape surrounding such
remnants from a grazing-dominated one to a softwood-
dominated one are unknown. Indeed, a number of
studies suggest there may be problems in using species
responses from fragmented systems characterized by a
cleared agricultural lands to forecast the effects of frag-
mentation in forest ecosystems (e.g. Estades and Tem-
ple, 1999; Monkkonen and Reuanen, 1999). Given this,
it is important to determine which species, if any, from a
range of vertebrate groups, are directly affected by sur-

rounding native woodland remnants with radiata pine
plantations.

4.3. Longitudinal studies

As described in previous sections, the Nanangroe
Study is a longitudinal experiment designed specifically
to directly measure changes in woodland taxa, as well as
to quantify relationships between taxa and associated
changes in landscape context (i.e. the transformation in
the landscape surrounding woodland fragments) and
habitat attributes. The major advantage of such a study
over a cross-sectional study is that it will enable rela-
tionships between the response and explanatory vari-
ables arising from co-variation among sites to be
distinguished from those arising from co-variation
within sites. In longitudinal studies, repeated observa-
tions on the same site tend to be more alike compared
with those on different sites. It is important when mak-
ing inferences about effects that that this correlation be
accounted for in the statistical analysis. Recent advan-
ces in statistical modelling provide a powerful frame-
work for the study relationships between the response
and explanatory variables where correlation patterns
between observations may be complicated, as is likely in
this study. Details of appropriate statistical models will
be given in a subsequent publication following analysis
of data to be collected over the next few years.
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REPTILE AND ARBOREAL MARSUPIAL RESPONSE TO REPLANTED
VEGETATION IN AGRICULTURAL LANDSCAPES
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Abstract. We report reptile and arboreal marsupial responses to vegetation planting and
remnant native vegetation in agricultural landscapes in southeastern Australia. We used a
hierarchical survey to select 23 landscapes that varied in the amounts of remnant native
vegetation and planted native vegetation. We selected two farms within each landscape. In
landscapes with plantings, we selected one farm with and one farm without plantings. We
surveyed arboreal marsupials and reptiles on four sites on each farm that encompassed four
vegetation types (plantings 7�20 years old, old-growth woodland, naturally occurring seedling
regrowth woodland, and coppice [i.e., multistemmed] regrowth woodland).
Reptiles and arboreal marsupials were less likely to occur on farms and in landscapes with

comparatively large areas of plantings. Such farms and landscapes had less native vegetation,
fewer paddock trees, and less woody debris within those areas of natural vegetation. The
relatively large area of planting on these farms was insufficient to overcome the lack of these
key structural attributes. Old-growth woodland, coppice regrowth, seedling regrowth, and
planted areas had different habitat values for different reptiles and arboreal marsupials. We
conclude that, although plantings may improve habitat conditions for some taxa, they may
not effectively offset the negative effects of native vegetation clearing for all species, especially
those reliant on old-growth woodland. Restoring suitable habitat for such species may take
decades to centuries.

Key words: arboreal marsupials; farmland biodiversity conservation; landscape restoration; Pseudo-
cheirus peregrinus; remnant vegetation; reptiles; revegetation; southeastern Australia; temperate woodlands;
Trichosurus vulpecula.

INTRODUCTION

Landscape modification associated with agriculture

afflicts nearly 20% of Earth’s vegetated land (UNEP

1999). Human-derived land degradation includes wind

and water erosion, dryland salinity, irrigation salinity

and water logging, soil compaction, vegetation loss and

modification, mass movement of soil, chemical contam-

ination of soil and water, soil acidification, and

biodiversity loss (Dale et al. 2000). In an attempt to

reverse the effects of land degradation, extensive

landscape restoration efforts have commenced in many

parts of the world (e.g., Hobbs 2003, Walker et al. 2004).

However, developing ecologically sound and practical

strategies to restore landscapes for native biota is not

straightforward. This is because many interacting issues

and processes must be understood (Saunders et al. 1993,

Bennett et al. 2000). For example, restoration efforts

typically occur in the presence of varying levels of

preexisting remnant vegetation cover and varying levels

of landscape heterogeneity. These preexisting conditions

may interact with restored vegetation, leading to

complex and potentially unexpected responses of native

species (Milton et al. 1994, Schwartz andMantgem 1997,

Benton et al. 2003, Laiolo 2004). Moreover, high-quality

data to guide restoration efforts are scarce, particularly

at the farm, landscape, and regional levels (Vera 2000,

Noss et al. 2006). Carefully designed multi-scale studies

that address key knowledge gaps can be useful to

strategically inform restoration efforts (Hobbs 2003).

In Australia, landscape modification has been recent

but extensive (Lindenmayer and Burgman 2005). Major

vegetation restoration efforts have commenced and

billions of dollars have been spent nationwide (State of

the Environment Report 2001). One of the regions

targeted for revegetation is the southwest slopes in New

South Wales (NSW). The region is the most extensively

and intensively disturbed of the 13 botanical regions of

NSW, with an estimated 85% of the original cover of

native vegetation removed in the past 200 years (Benson

1999). Most remaining temperate woodland stands

occur as small, remnant patches ,1 ha (Gibbons and

Boak 2002). Woodland clearing to grow agricultural

crops or to promote grass growth for grazing has

removed some plant species and modified or destroyed

habitat for other woodland-dependent organisms.

Where temperate woodlands have not been completely

cleared, they are often under substantial pressure from
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livestock grazing (Spooner et al. 2002). Furthermore,

many areas of temperate woodland in southeastern
Australia are potentially susceptible to salinity (Stir-

zaker et al. 2002).
Although major revegetation programs have been

underway for some time on the southwest slopes of
NSW (Salt et al. 2004), the value of revegetation efforts
in contributing to biodiversity conservation is poorly

understood (Ryan 2000, Lindenmayer et al. 2002).
Limited data suggest that recently planted areas provide

habitat for some woodland birds (Greening Australia
2001, Martin et al. 2004, Kavanagh et al. 2005), but

values for other groups such as mammals and reptiles
remain poorly known. Moreover, the effects on biota of

plantings have not been separated from effects of old-
growth temperate woodland remnants and natural

woodland regeneration (Salt et al. 2004). In this paper,
we describe a nested ‘‘natural experiment’’ to assess the

effectiveness of restoration plantings in agricultural
landscapes with varying amounts and types of native
vegetation on the southwest slopes of NSW. We

addressed the following general questions:

1) Is there an overall difference in the reptile and
arboreal marsupial fauna between farms where revege-

tation has taken place and where it has not?
2) Does the presence of particular species of mam-

mals and reptiles differ between vegetation forms (e.g.,
old-growth woodland vs. coppice regrowth)? If so, is this
difference consistent across farms with or without

plantings?
3) Are there relationships between patterns of species

occurrence and measured attributes at the site, farm,
and landscape levels? If so, are they of practical use as

predictors to help guide future landscape restoration
efforts?

4) Is there evidence that random variation in mam-
mal and reptile data at the farm level and/or landscape

level is greater than at the site level (i.e., scale effects)?
5) In summary, are plantings and other existing

vegetation forms interchangeable for reptiles and
arboreal marsupials?

Given that revegetation efforts are often used in an
attempt to mitigate the impacts associated with past land

clearing (Ryan 2000), the results of our study should have
broad applicability to revegetation efforts taking place

elsewhere around the world (e.g., Walker et al. 2004).
Examples are heterogeneous agricultural landscapes in

Europe and North America where integrated restoration
and vegetation retention efforts are seen as critical to
maintaining farmland biota (Attain and deLucio 2001,

Laiolo 2004, Tscharntke et al. 2005).

METHODS

Study area

We studied an area spanning the towns of Junee

(0552952 E 6140128 N) in the north, Albury (0494981 E
6008873 N) in the south (a distance of ;150 km), and
Gundagai (600532 E 6119073 N) and Howlong (467090

E 6017897 N) in the east and west respectively (a

distance of ;120 km). This broadly coincides with the

southern half of the southwest slopes region of NSW.

The predominant form of native vegetation in the region

is temperate woodland (sensu Hobbs and Yates 2000)

dominated by white box Eucalyptus albens, grey box E.

microcarpa, or other tree species such as yellow box

E. melliodora, Blakely’s red gum E. blakelyi, red

stringybark E. macrorhyncha, and red ironbark E.

sideroxylon. Wetter areas along creeks and streams

support river red gum E. camaldulensis.

Study design

Landscape selection.—The extent of land clearing (and

hence the amount of remnant vegetation cover) and the

amount of planting across the study region provided an

ideal setting for a study of the effects of revegetation on

wildlife. We identified three spatial scales in our study:

landscape, farm, and site. We chose two regions, Murray

River Catchment and the Murrumbidgee River Catch-

ment, in which we selected 10 and 13 landscapes,

respectively (Fig. 1). We defined a landscape as a circular

area covering 10 000 ha that was relatively homogenous

in terms of landform and vegetation cover. We based

landscape selection on aerial photographs, satellite

imagery, and ground truthing. We used two cross-

classifying factors: (1) the amount of planting and (2) the

amount of remnant native vegetation (see Plate 1). We

recognized two classes of remnant vegetation cover

corresponding to .15% and ,9% cover, respectively.

Percentage cover classes for planting intensity were .1%,

0.5�0.9%, and 0.2%. We based these classes on natural

breaks in the histograms of values for these cover

attributes. We selected four landscapes in each of the

six remnant3 planting cover classes except for the high-

high class, where only three landscapes were available.

Farm selection.—We selected two farms in each of the

23 landscapes (see Fig. 1b). In landscapes with plantings,

one farm was chosen with plantings and the other

without. On a given farm, we selected four 1-ha sites

(200 m long350 m wide transect; see Fig. 1c). On the 23

farms without plantings, all sites were in patches of

remnant native vegetation. On the 23 farms with

plantings, we endeavored to select three sites within

plantings and one site in remnant native vegetation,

although this was not always possible (Table 1). We

surveyed the 184 permanent sites in our study six times

for reptiles and arboreal marsupials during 2002�2005.
In summary, the hierarchical design was replicated in

two regions where sites were nested within farms and

farms were nested within landscapes. There were

residual or random effects and associated estimates of

random variability or components of variance at each

level of the design. These estimated components of

variance provided a measure of variability between the

units at the landscape, farm, and site level of the design.

Hence, they provided a measure of scale effects at the

landscape and farm levels.
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Treatment structure.—We classified both farms and

landscapes as either having plantings or not having

plantings. We assigned sites on farms to one of four

vegetation forms: plantings, old-growth woodland,

coppice regrowth woodland, and seedling regrowth

woodland. Revegetation plantings were areas character-

ized by a mix of locally endemic and nonlocal Australian

ground cover, understory, and overstory plant species.

Planted trees were typically spaced 2 m apart; however,

there were no standard protocols regarding spacing and

composition of plant species. All plantings exceeded 7

years of age and many were 10�20 years old. Most were

established to mitigate problems associated with soil

erosion or salinity. Coppice regrowth was multistemmed

regrowth from existing living trees recovering after

disturbance by fire, or logging, or both. Seedling

regrowth was natural regrowth originating from seeds

germinating after being dropped by overstory trees. Old-

growth woodland was dominated by large old trees.

Our design comprised 10 treatment combinations

(Table 1). We chose to highlight the following compar-

isons:

1) the overall effect of farm type (farms with planting

vs. farms without plantings; df ¼ 1);

FIG. 1. Map of our study design showing (a) 23 landscapes, each with two farms; (b) one landscape showing two farms; and (c)
one farm showing four sites.
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2) for farms without plantings, we estimated the

(factorial) effects of landscape type (with planting vs. no

plantings; df ¼ 1), vegetation form (coppice regrowth

woodland vs. seedling regrowth woodland vs. old-

growth woodland; df¼2), and their interactions (df¼2);

3) for farms with plantings, we compared coppice

regrowth woodland, seedling regrowth woodland, old-

growth woodland, and plantings (df¼ 3).

Field counting protocols.—We counted arboreal mar-

supials by repeated spotlighting along transects using

the same three observers (M. Crane, D. Michael, and C.

MacGregor). We completed surveys in the spring each

year. The survey protocols followed Lindenmayer et al.

(2001). We gathered data on reptiles using repeated

time- and area- constrained (20 minute 3 1 ha) active

searches along the entire length of each transect. We also

searched for reptiles under artificial substrates estab-

lished at 0-m and 100-m plot points along each transect.

These substrates were overlaid sheets of corrugated iron,

piles of hardwood offcuts from local mills, and sets of

four standard roof tiles. The same three observers (M.

Crane, D. Michael, and C. MacGregor) completed all

reptile surveys. We conducted surveys in different

seasons to maximize the chances of detection of different

species of reptiles. We aggregated data to the site level

for statistical analysis for both vertebrate groups.

Measurement of covariates.—We established 20 3 20

m vegetation plots at the 0-, 100-, and 200-m points

along the marked transect at each site. We recorded

many ‘‘habitat’’ measures (see Appendix). We also

recorded vegetation cover attributes and measures of

land use practices at the farm and landscape levels.

These variables included the area of remnants and

plantings, total combined perimeters of vegetation type

divided by total area (a measure of shape), area of

cleared land, and topography. Tables 2 and 3 provide

summary statistics of key attributes at the site and farm

levels, respectively. Plantings and woodland remnants

varied in size from ,3 ha to 20 ha and varied in shape

from narrow strips to blocks (see Table 2).

Statistical modeling

Abundance counts for arboreal marsupials and

reptiles were low and there was a high frequency of

absences or zero counts for most species. Thus, we

considered, in the first instance, data in their binary

form (i.e., presence/absence only). The statistical model

for our binary response data was a linear logistic model,

which included random effects as well as fixed effects:

logit½ p� ¼ Xbþ Zu

where the function logit(p) ¼ log(p/(1 � p)) (i.e.,

log(odds)) is applied to each component of the vector of

probabilities p (see McCulloch and Searle [2001] for a

detailed account of these models). We refer to p as the

probability of detection, whereby we mean the probabil-

ity that an animal is present multiplied by the probability

that it is observed, given presence. Here, X represents the

treatments landscape type, farm type, vegetation form,

and covariates at all levels. The slope parameter b

represents the fixed effects which are the effects of the

treatments and covariates. The random factors Z were

associated with landscapes, farms, and sites. The vector

of random effects (known as BLUPs or best linear

unbiased predictors [Robinson 1991]) was represented by

the unobserved random variable l with mean zero and

unknown variance(l) ¼ G. The variance matrix G

contains terms that are the variances of the separate

components of the vector l, which are called variance

components. Variance components measure the contri-

bution of random variation at each level of the design that

is not accounted for by the fixed factors; hence they

TABLE 1. Sites cross-classified by landscape type (at the landscape level), farm type (at the farm level), and vegetation form (at the
site level).

Vegetation form

Landscape type Farm type Coppice regrowth Seedling regrowth Old growth Plantings

No plantings no plantings 13 18 33 0
No plantings plantings 0 0 0 0
Plantings no plantings 11 14 27 0
Plantings plantings 5 5 12 46

TABLE 2. Size and shape attributes for replantings and patches of remnant native woodland.

Areas , 3 ha Areas 3�10 ha Areas . 10 ha

Shape Remnants Plantings Remnants Plantings Remnants Plantings

Narrow strip 5 17 14 3 3 0
Strip 29 12 30 4 30 2
Block 4 4 17 4 6 0

Notes: Narrow strips, strips, and blocks have a (perimeter/area)/(square-root area) value of
�0.10, 0.11�0.19, and �0.20, respectively. Some of the ‘‘blocks’’ may, in fact, be more circular
as some (perimeter/area)/(square-root area) values approached 0.28. The values used correct for
remnant area and perimeter : area ratios for different-sized remnants.
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contribute to the total variability at each level of the

design and provide insight into scale effects (i.e.,

ecological processes that are operating at these levels).

We jointly estimated the regression coefficients b and

variance components inG using themethod of estimation

for generalized linear mixed models given by Schall

(1991). For binary data the residual variance was fixed at

1 in all cases.

We assessed the statistical significance of the fixed

effects by comparing Wald statistics (McCulloch and

Searle 2001:240) with critical values of the appropriate

chi-squared distribution. Design variables (treatments)

were first assessed for statistical significance by fitting

the contrasts just described. We then screened covariates

for significance by introducing relevant (relevant to the

species under consideration) likely candidates into a full

model (i.e., significant treatment effects and covariates

simultaneously) and then excluding nonsignificant terms

using a nonautomated stepwise process. We also

considered interaction terms for important variables in

the models, but they were rarely significant.

Some site-level counts were aggregated to give a

measure of animal abundance at the farm level and to

alleviate statistical problems associated with low counts.

We aggregated data across survey periods to give total

numbers of animals counted over years on the four sites

within each farm. We analyzed these data for tree

planting and other effects by fitting appropriate general

linear mixed models (McCulloch and Searle 2001).

RESULTS

Arboreal marsupials

We recorded four species of arboreal marsupials.

Detailed statistical analyses of data for the remaining

two taxa, Trichosurus vulpecula (common brushtail

possum; see Plate 1) and Pseudocheirus peregrinus

(common ringtail possum), are summarized here. Both

Petaurus breviceps (sugar glider) and Petaurus norfol-

censis (squirrel glider) were rare (2% and 3% of sites),

and there were insufficient records for further statistical

analyses.

Trichosurus vulpecula.—

1. Vegetation form and covariate (fixed) effects.—

Table 4 shows the probability of detection of T.

vulpecula at a 1-ha site for different vegetation types of

sites within farm types and different landscape types.

Detection rates were significantly higher on farms

without plantings (P ¼ 0.05) than on farms with

plantings. On farms with plantings, detection rates were

significantly lower in plantings and seedling regrowth

woodland compared with coppice regrowth and old-

growth woodland (P ¼ 0.001). We detected fewer T.

vulpecula in old-growth woodland remnants on farms

without plantings in landscapes with plantings than in

seedling regrowth or coppice regrowth (P ¼ 0.01).

We identified a significant (P ¼ 0.02) covariate effect

for the detection of T. vulpecula. For a 10% increase in

landscape planting area (in landscapes with plantings),

there was a 16% decrease in the odds of recording the

species. As an example, odds of 1:1 (P ¼ 0.5) were

TABLE 3. Remnant vegetation and tree planting attributes of farms chosen in the study.

Farms without plantings
Farms with plantings in
landscapes with plantingsLandscapes without plantings Landscapes with plantings

Attribute Median Interquartile range Median Interquartile range Median Interquartile range

Area of remnants (ha) 116 60�199 99 70�278 32 19�122
Edge index of remnants 210 164�295 190 148�275 243 150�306
Area of plantings (ha) 0 0 1 0.5�6 25 15�41
Edge index of plantings 0 0 1145 894�1363 736 542�985
Area of cleared land (ha) 883 798�938 897 719�917 915 854�940

TABLE 4. Estimated probability of detection (%) and associated confidence interval of several arboreal marsupial and reptile
species at a site cross-classified by landscape type, farm type, and vegetation form.

Probability of detection and 85% CI (%)

Landscape Farm Site T. vulpecula P. peregrinus C. marmoratus C. tetradactyla C. carbabyi

No plantings no plantings coppice regrowth 38 (21, 59) 19 (8, 38) 36 (22, 53) 7 (3, 16) 12 (5, 26)
No plantings no plantings seedling regrowth 27 (14, 46) 17 (7, 3) 12 (6, 21) 23 (14, 36) 3 (1, 10)
No plantings no plantings old growth 43 (28, 60) 30 (17, 47) 30 (20, 42) 15 (9, 24) 6 (3, 12)
Plantings no plantings coppice regrowth 21 (8, 45) 0 4 (1, 11) 3 (1, 13) 11 (4, 25)
Plantings no plantings seedling regrowth 29 (15, 50) 19 (9, 36) 17 (9, 30) 12 (6, 23) 10 (4, 22)
Plantings no plantings old growth 11 (5, 22) 44 (27, 61) 23 (14, 35) 5 (2, 10) 17 (9, 28)
Plantings plantings coppice regrowth 23 (7, 55) 14 (3, 50) 12 (2, 42) 9 (2, 34) 23 (7, 55)
Plantings plantings seedling regrowth 0 11 (2, 44) 13 (4, 36) 0 0
Plantings plantings old growth 21 (10, 40) 11 (4, 27) 35 (21, 53) 17 (8, 31) 17 (8, 34)
Plantings plantings planting 1 (0, 4) 0 4 (2, 9) 18 (12, 26) 1 (0, 3)

Note: Nonoverlap of 85% confidence interval suggests a significant difference at P¼ 0.05 between two means.
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reduced to 5:6 against (P¼ 0.45). Note that we prefer to

describe our results in terms of odds rather than

probabilities as the linear modeling is done on a log

odds scale. This means that the percentage change in

odds is constant for all values of the given explanatory

variable. We found no other significant covariate effects

for T. vulpecula.

We found that the total area of remnants on farms

with plantings was significantly lower (P ¼ 0.007) than

on farms without plantings. Consequently, we statisti-

cally controlled for the area of remnant vegetation on

farms. Although the magnitude of the planting effect for

T. vulpecula was reduced, it nevertheless remained

statistically significant (P , 0.05).

2. Scale effects.—We found evidence of extra vari-

ability (variance component ¼ 1.08, SE ¼ 0.64) at the

landscape level. That is, relative to site-to-site or farm-

to-farm (random) variability, residual variation at the

landscape level was large. Thus, there was unexplained

variability between landscapes and hence there were

unmeasured attributes associated with landscapes. Note

that this assessment is based on the magnitude of the

variance components, as there is no rigorous way of

testing this.

Landscape-level means or BLUPs provided a measure

for characterizing landscapes in terms of their suitability

for T. vulpecula. By graphing the BLUPs, patterns of

random variation among landscapes can be studied and

‘‘favorable’’ and ‘‘unfavorable’’ landscapes can be

identified for the species. Inspection of Fig. 2 showed

no clear evidence of spatial dispersion in the (residual)

landscape detection probabilities for the species. How-

ever, there appear to be hotspots for the detection of T.

vulpecula near Junee and Tarcutta.

3. Farm-level abundance data and covariate effects.—

The geometric mean of the number of T. vulpecula

counted on farms in landscapes without plantings was 6,

while the mean number per farm in landscapes with

plantings was ;2. This difference was statistically

significant at P , 0.001. Furthermore, for a 1% increase

in the area of plantings in landscapes with plantings,

there was a corresponding decrease of 0.52 % (95% CI¼
0.02�1.02%) in the number of T. vulpecula (P¼ 0.02). In

addition, the geometric mean of the number of T.

vulpecula on farms without plantings (within landscapes

with plantings) was 2.7, whereas the corresponding

mean on farms with plantings was 1.5 (significance level

of difference was P ¼ 0.03). The magnitude of these

planting effects and the strength of the evidence for these

effects were reduced when planted sites were removed

prior to aggregation and farm-level data were normal-

ized by survey effort (the number of sites). However, the

inferences remained the same.

Pseudocheirus peregrinus.—

1. Vegetation form and covariate (fixed) effects.—

Detection rates for P. peregrinus differed (P ¼ 0.07)

between vegetation types on farms without plantings

(Table 4), with the highest detection rates in old-growth

remnants (P ¼ 0.07). We also identified two significant

covariate effects. The odds of detection of P. peregrinus

on a site increased by ;1.3% for each 10% increase in

the amount of White Box in the overstory of that site (P

¼ 0.014). In addition, the odds of detection increased by

;7% for a 10% increase in the number of logs per

hectare (P , 0.001). This covariate explained much of

the statistically significant difference between the ‘‘treat-

ment’’ detection rates.

Our data showed that: (1) the total area of remnant

vegetation on farms with plantings was lower than on

farms without plantings, and (2) log density was higher

in old-growth woodland remnants (P , 0.001), signif-

icantly lower in plantings (P , 0.001), and lower in

remnants on farms with plantings (P , 0.05). The

planting effect for P. peregrinus was reduced after

statistically controlling for remnant area and log

density, but remained statistically significant (P , 0.05).

2. Scale effects.—We found evidence of extra vari-

ability at the farm level for P. peregrinus with some

additional variability at the landscape level. The

estimated variance component was 1.4 with an estimated

standard error of 0.56. Thus, there were attributes

associated with farms (some of which may remain

unidentified) that made some farms particularly suitable

for P. peregrinus and, conversely, some farms particu-

larly unsuitable for the species. Farm-level residuals or

BLUPs (shown in Fig. 3) provided a measure for

characterizing farms (and landscapes) according to their

suitability for P. peregrinus. There was no strong

FIG. 2. Landscape-level best linear unbiased predictor
(BLUP) scores for Trichosurus vulpecula (common brushtail
possum) represented by a gray scale of shading; black shows the
highest (.30%) and white the lowest detection rates (,10%).
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evidence of spatial patterns for landscapes and farms

across the study area.

3. Farm-level abundance data.—The factors ‘‘farm

type’’ and ‘‘area of remnants on farms’’ were statistically

significant predictors of the abundance of P. peregrinus

on a farm. Farms with plantings supported significantly

(P , 0.001) fewer animals than farms without plantings

(geometric means of 1 and ;4, respectively). Alterna-

tively, a 1% increase in the area of native woodland

remnants on a farm resulted in an average increase of

0.29% (95% CI¼ 0.03�0.55%) in animal abundance (P¼
0.03).

Reptiles

General detection patterns for all species.—We detect-

ed 22 species of reptiles; 11 were not recorded in

plantings, whereas seven were more frequently detected

in plantings than in non-planted vegetation (Table 5).

Many species were uncommon and we recorded overall

detection rates exceeding 10% for four species (Table 5).

We will present detailed analyses of detection data for

these four species, preceded by an analysis of the

aggregate measure of species richness for the overall

reptile assemblage.

Overall reptile richness.—The average number of

reptile species per site (per survey) was 1.79 (maximum

5) and per farm (over survey years) was 3.24 (maximum

6) species. There were significantly (P ¼ 0.006) more

species in sites on farms without plantings (1.98) than on

farms with plantings (1.47 species) (SED ¼ 0.185;

standard error of the difference between sites with and

without plantings). Site-level covariates simultaneously

affecting the number of species at a site were as follows.

For a 38% increase in tussock cover (P¼ 0.04) there was

approximately an additional 0.5 species. The effect was

similar for the percentage of grass cover [i.e., an

additional 0.5 a species for an increase of 25% in grass

cover (P ¼ 0.002)]. Furthermore, an increase of 0.24

reptile species/ha was found for an increase of 1% in

density of trees .50 cm in dbh (P , 0.001).

Farm-level effects for the number of species.—Reptile

richness at the farm level was significantly higher (P ¼
0.02) in landscapes without plantings (mean 4.7 species

cf. 3.6 species, respectively). No covariates explained this

effect. The number of species on a farm increased with

the amount of remnant native vegetation (P ¼ 0.002).

There was a 6% increase in the number of reptile taxa

with a 10% increase in the area of remnant native

vegetation on a farm.

Christinus marmoratus.—

1. Vegetation form and covariate (fixed) effects.—

Overall detection rates of C. marmoratus (southern

marbled gecko) tended to be low in coppice regrowth

and high in seedling regrowth in landscapes with

plantings. The opposite effect occurred in landscapes

without plantings (P ¼ 0.01). On farms with plantings,

detection rates were significantly lower (P ¼ 0.001) in

plantings than in old growth (Table 4). In addition to

the treatment effects, the odds of detecting C. marmor-

atus increased by ;6% for a 10% increase in the density

of trees .50 cm in diameter (P¼0.007) but decreased (P

¼ 0.001) by ;80% if there was more than 5% rock cover

at the site.

2. Scale effects.—There was no evidence of extra

variability in detection rates of C. marmoratus at the

farm or landscape levels.

3. Farm-level abundance data.—There were signifi-

cantly (P ¼ 0.003) more C. marmoratus on farms

without plantings than on farms with plantings (geo-

metric mean 3.3 and 1.4 individuals, respectively).

Carlia tetradactyla.—

1. Vegetation form and covariate (fixed) effects.—

Detection rates of C. tetradactyla (southern rainbow

skink) were significantly (P ¼ 0.03) higher in seedling

regrowth than in coppice regrowth on farms without

plantings (Table 4). This pattern was not repeated on

farms with plantings where lowest detection rates

occurred in seedling regrowth. Furthermore, sites on

farms without plantings in landscapes with plantings

supported fewer C. tetradactyla (P¼ 0.04) than sites on

farms without plantings in landscapes without plantings

or farms with plantings in landscapes with plantings. We

identified two measured covariates significantly related

to the detection rates of C. tetradactyla. A 1% increase in

the amount of tussock grass cover led to a significant (P

¼ 0.002) increase (of ;3.2% [(95% CI 1.2�5.2%]) in the

odds of detection of the species. There also was a

significant (P¼ 0.013) but negative effect of the amount

FIG. 3. Farm-level BLUP scores for Pseudocheirus pere-
grinus (common ringtail possum) represented by a gray scale of
shading; black shows the highest (.30%) and white the lowest
detection rates (,10%).
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of bare earth; with a 1% increase in the amount of bare

earth, the odds of detection declined by 3.8 (95% CI

0.8�6.8%).

There was no evidence of extra variability in detection

rates of C. tetradactyla at the landscape level.

2. Farm–level abundance data.—There were fewer C.

tetradactyla on farms without plantings in landscapes

with plantings than on farms with plantings or farms

without plantings in landscapes without plantings (P ¼
0.01).

Morethia boulengeri.—

1. Vegetation form and covariate (fixed) effects.—We

found no evidence of a significant planting effect or an

effect of any other vegetation form on the detection rates

of M. boulengeri (Boulenger’s skink). There was,

however, a highly significant (P , 0.001) effect of the

general topography of the landscape, with the species

being more likely (estimated detection probability 43%)

to be recorded in landscapes that are best described as

plains (typically in the flatter western landscapes) than

elsewhere in the study region (detection probability

12%).

2. Farm–level abundance data.—As in the case of

detection data, the abundance of the species was

significantly (P ¼ 0.002) higher in landscapes with a

topographic position best described as flat than in other

parts of a region.

3. Scale (random) effects.—The estimated combined

landscape and farm variance component was 1.391 (SE

¼ 0.50). Fig. 4 shows a map of the (residual) probability

(BLUP) of detection of M. boulengeri at each farm.

Cryptoblepharus carnabyi.—Detection rates of C.

carnabyi (Carnaby’s wallskink) were significantly (P ¼
0.02) higher in coppice regrowth and old growth than in

seedling regrowth and plantings on farms with plantings

(Table 4). Extra variability was evident at the combined

landscape and farm level (variance component ¼ 1.48,

SE¼ 0.60) for C. carnabyi.

DISCUSSION

We have undertaken a large study at multiple spatial

scales to assess the value of plantings and remnant

native vegetation for biodiversity. The novel study

design and the general approach can act as a useful

model for other studies of the effectiveness of restora-

TABLE 5. Estimated detection rates (%) per site, per survey of reptile species in plantings and other
(non-planted) vegetation forms.

Species Non-plantings Plantings

Morethia boulengeri, Boulenger’s skink 47.8 26.1
Christinus marmoratus, southern marbled gecko 47.1 10.9
Carlia tetradactyla, southern rainbow skink 27.5 39.1
Cryptoblepharus carnabyi, Carnaby’s wallskink 27.5 2.2
Ctenotus robustus, striped skink 8.0 10.9
Egernia striolata, tree crevice skink 7.2 6.5
Delma inornata, olive legless lizard 6.5 13.0
Diplodactylus vittatus, stone gecko 5.1 0.0
Hemiergis decresiensis talbingoensis, three-toed skink 2.2 13.0
Parasuta dwyeri, Dwyer’s snake 2.2 0.0
Varanus varius, lace monitor 2.2 0.0
Lerista bougainvillii, southeastern slider 1.4 0.0
Menetia greyii, common dwarf skink 1.4 0.0
Pseudonaja textilis, eastern brown snake 1.4 4.3
Tiliqua scincoides, eastern blue tongue 1.4 4.3
Mentia greyii, dwarf skink 1.4 0.0
Pogona barbata, eastern bearded dragon 0.7 2.2
Morelia spilota metcalfi, carpet python 0.7 0.0
Strophurus intermedius, southern spiny-tailed gecko 0.7 0.0
Lampropholis guichenoti, garden skink 0.4 0.0
Ramphotyphlops nigrescens, blackish blind snake 0.4 0.0
Underwoodisaurus milii, thick-tailed gecko 0.4 0.0

FIG. 4. Farm-level BLUP scores for Morethia boulengeri
(Boulenger’s skink) represented by a gray scale of shading;
black shows the highest (.40%) and white the lowest detection
rates (,10%).
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tion efforts for a number of key reasons. This study has

demonstrated the following. (1) Factors at multiple

spatial scales can affect the distribution of a given

species (see also Forman 1964, Diamond 1973) and

different species respond to attributes at different scales.

(2) Restored areas are not spatially isolated units

because other kinds of native vegetation cover (e.g.,

patches of remnant vegetation, scattered paddock trees,

grass composition and structure, coarse woody debris)

on the same farm or in the surrounding landscape can

significantly affect patterns of species richness and the

presence and abundance of individual taxa. These key

findings shape much of the following discussion of

reptile and arboreal marsupial response and the

resulting management implications. Given that restora-

tion efforts on sites in many agricultural areas around

the world often take place on farms and in landscapes

with heterogeneous patterns of vegetation cover (e.g.,

Laiolo 2004), our approach and findings have broad

relevance both to restoration studies and programs per

se.

In this study, the more tree planting that occurred at

the farm level, the fewer arboreal marsupials were

detected. Negative effects of revegetation may be

explained as follows. First, planted areas are dominated

by young trees (typically ,20 years old) and they do not

provide suitable nesting habitat for cavity-dependent

animals like Trichosusrus vulpecula and possibly also

Pseudocheirus peregrinus, although the latter species can

build dreys (or stick nests) and might be expected to live

in replantings where it could nest. However, the negative

association with tree planting cannot be attributed solely

to the fact that arboreal marsupials do not use plantings,

because these species also were less common in old-

growth and regrowth woodland sites on farms and

landscapes where revegetation had occurred. Hence, the

negative relationships with planting at the farm and

landscape scale probably also relate to past management

history. That is, the most extensive planting efforts have

typically taken place on farms and in landscapes where

there has been considerable past land clearing and

associated land degradation problems such as dryland

salinity and soil erosion (Lambeck 1999). The area of

remnants on farms with plantings was significantly

lower than that on farms without plantings and log

density was lower in remnants on farms with plantings.

The amount of coarse woody debris remaining on a

farm may be a surrogate for ‘‘farm tidiness’’; the more

‘‘untidy’’ the farm, the greater the chance of supporting

arboreal marsupials such as P. peregrinus.

There were fewer reptile species on farms in land-

scapes with plantings. This result was consistent with the

fact that the number of reptile species increased with the

area of native vegetation on farms. However, for Carlia

tetradactyla and Christinus marmoratus, there also was

evidence that detection rates on sites differed between

vegetation forms depending on conditions characteriz-

ing the surrounding farms and/or landscapes. Although

there were few strong relationships with site- and farm-

level covariates, reptiles tended to respond to habitat

variables, such as tussock grass cover, that were

measured at the site level. Many of the effects

established for reptiles were consistent with the known

biology of the various species of reptiles we analyzed,

such as the use of foraging and sheltering sites (e.g.,

Fischer et al. 2003, Michael et al. 2003). Notably, such

site-level covariate effects for reptiles were in contrast

with the results for arboreal marsupials, which typically

related to variables measured at the farm level such as

the area of remnant vegetation on farms. This was

PLATE. 1. (Left) Common brushtail possums (Trichosurus vulpecula) were negatively associated with plantings at the site, farm,
and landscape scales. (Right) Typical native vegetation plantings in the study area. Both strip and block plantings were included in
the study. Photo credits: D. B. Lindenmayer.
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expected because of the small body sizes and home range

sizes of most of the reptile species that we recorded.

Management implications

Recent approaches to vegetation management in

Australian temperate woodlands have focused on a

‘‘no net loss policy’’ whereby any vegetation clearing

that takes place on a farm must be ‘‘offset’’ by planting

elsewhere on that property (Gibbons et al. 2005).

Although this approach has been adopted widely in

Australian States such as New South Wales and

Victoria, data on arboreal marsupials and reptiles

presented in this study suggest that while plantings are

better than no revegetation (particularly for some reptile

species), recent planting of native vegetation has not

offset negative effects of reduced old-growth remnant

woodland vegetation cover in these areas. This finding

highlights the fact that plantings and old-growth

woodland may not readily be interchangeable habitats.

Our data indicate that reptiles and arboreal marsupials

were not responding in a simple way to the total amount

of native vegetation on a farm or in a landscape. Rather,

the type of the vegetation also was important. We

speculate that the observed negative effect of tree

planting is probably a surrogate effect, with animals

being absent from areas characterized by extensive past

land clearing. Notably, preliminary analysis of bird data

recorded on the same sites (R. B. Cunningham, D. B.

Linenmayer, M. Crane, D. Michael, and C. MacGregor,

unpublished data) suggests a somewhat different effect.

Thus, the findings presented in this paper should not be

a disincentive for continued revegetation efforts.

Our data suggest that old-growth woodland, seedling

regrowth woodland, coppice regrowth and plantings are

quite different habitats for different elements of the

biota. This reinforces the comments made earlier that

old-growth woodlands and other vegetation (such as

plantings) are not interchangeable habitats. This is not

surprising, given differences in the structural attributes

and patterns of plant species composition between these

different vegetation forms. Our results have significant

ramifications for vegetation management policies on

grazing land. Differences in habitat requirements

between species, the long-term conservation of wood-

land biota, and the maintenance of overall woodland

species richness will require the maintenance and

continued recruitment of a range of vegetation types

on a given farm and landscape. Our on-ground

experience of talking to landholders suggests that

regrowth stands are regarded as ‘‘rubbish’’ country by

many. These areas are often targeted for clearing and/or

repeated burning. This is a problem because new stands

of old-growth woodland cannot develop without first

passing through a regrowth phase. Clearly there is a

need for scientists to better communicate the different

habitat roles that different native vegetation can play on

farms.

There was evidence of spatial-scale effects at the farm

and landscape levels for several species (T. vulpecula, P.

peregrinus,M. boulengeri). Variance at the farm level not

explained by site- or farm-level attributes may be related

to aspects of farm management that are difficult to

quantify, such as the amount of ploughing, firewood

harvesting, phosphate application, and bush rock

collection, practices thought to impact on many

elements of the biota including reptiles (Shine et al.

1998, Driscoll et al. 2000). Landscape-level scale effects

probably relate to broad landscape features (e.g., soil

types and topographic features), but also may include

multi-farm management practices such as coordinated

Vulpes vulpes (red fox) baiting programs (or lack

thereof) plus fertilizer application. ‘‘Possum-rich’’ and,

conversely, ‘‘possum-poor’’ farms and landscapes, can

be identified by studying residual spatial variation in

detection rates as shown in Figs. 2 and 3. Similarly,

hotspots for Boulenger’s skink can be inferred from a

close inspection of Fig. 4. Unexplained farm- and

landscape-level variance highlights the need for contin-

ued research efforts to better understand the response

and appropriate management of biota in heavily

disturbed agricultural areas, such as the temperate

woodlands of southeastern Australia.
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APPENDIX

Covariate measures at the landscape, farm, and site levels used in detailed statistical analyses of arboreal marsupial and reptile
responses to remnant woodland areas and revegetation (Ecological Archives A017-024-A1).
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Abstract. Morning vocal activity data for birds were collected using automatic sound recorders at 165 sites in
fragmented forests at Tumut in south-eastern Australia. A model was developed to describe the statistical properties
of the vocal activity data and study the relationship between the number of ‘elements’ (or notes) broadcast by birds
and the number of birds recorded by human observers. We discuss the practical issues of finding a model where
variance heterogeneity and skewness is a feature of the data, while the context of the problem required that
multiplicative relationships be preserved. A satisfactory fit to our vocal activity data was obtained by using a
Gamma distribution.

For most groups of birds, the observed relationships between vocal activity and the number of birds recorded by
human point counts were weak but statistically significant.

Our analysis suggests that these data provide limited useful information about vocal activity per bird. Automatic
sound-recording data may be informative for drawing inferences about temporal patterns in vocal activity but do
not seem useful as a method for estimating the abundance of birds. A significant relationship was identified between
the number of species vocalising, as measured by sound recorders, and the number of species observed by point
count method. However, the relationship was far from isometric and there were many more species detected by the
sound recorders than by human observers.

Results from analyses of vocal activity data gathered at Tumut were confirmed by additional data obtained in a
subsequent, small calibration study in the Namadgi National Park in the Australian Capital Territory.
WR02062
Stati st ical analyses of vocal acti vit y in for es t bir dsR. B. Cunni ngham et al .

Introduction
Birds are a highly diverse group of vertebrates and there are
several thousand species worldwide (Crosby et al. 1994).
Given the high richness of species in many areas, and often
the large number of individual birds within a given species
and within a region, effective intra- and interspecific
communication is central to many aspects of bird population
dynamics. Birds have a poorly developed sense of smell and
most species communicate primarily by visual signals (e.g.
plumage colouring), vocalisation, or a combination of both
(Gill 1995). Birds have special anatomical developments for
sound production, such as the syrinx (Brackenbury 1977),
and they vocalise in a range of different situations and for
different reasons (Catchpole and Slater 1995): territorial
defence (Ford 1989; Galeotti 1998), during courtship and to
attract mates (Bradley 1987), as part of competition between
species (Martin et al. 1996), to warn other birds of potential
threats, for communication between parents and their

offspring (Jouventin 1982), and, in the case of species that
form flocks, to maintain group cohesion (Bruce and
Kikkawa 1988).

Vocal communication in all animals (including birds)
requires energy over and above that required for the
maintenance of basic biological functions such as
temperature regulation, the metabolism of food, and other
key processes (Radesäter et al. 1987; Gerhardt 1994;
Eberhardt 1996). Therefore, the more an animal vocalises,
the greater the amount of energy that will be consumed
(Prestwich 1994; Gottlander 1987). In theory, it should be
possible for organisms to obtain sufficient resources to meet
basic biological needs more rapidly on more productive sites
than on low-productivity ones. Greater productivity may
allow a reduction in the time spent foraging which can, in
turn, allow more time to be spent on other activities such as
increasing reproductive output (as speculated to occur
among females of some species of gliding mammals: Quin
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et al. 1996) and/or altering within-population mating
systems – again, to maximise fecundity (MacDonald and
Carr 1989). In the case of birds, reductions in foraging time
may allow them to spend more time vocalising and, in turn,
advertise to potential mates that a given territory is a
high-productivity one in which young can be successfully
raised (Gottlander 1987; Møller 1991; Catchpole and Slater
1995).

Given the important roles of vocalisation in birds, in this
study we have used automatic sound recorders to collect data
on vocalisations by birds in a fragmented forest neat Tumut
in south-eastern New South Wales. Our study area appeared
to be an interesting one to examine from the perspective of
bird vocalisation because there is marked variation in the
types of forest in the region, spanning exotic plantations of
radiata pine (Pinus radiata), areas of dry, open eucalypt
forest through to stands of tall wet sclerophyll forest. Hence,
there are likely to be substantial differences in the availability
of key food resources for many birds (particularly
flower-based ones like nectar, pollen, fruit and seeds) – and
hence site productivity – with possible corresponding
impacts on vocal activity in birds. In addition, within the
relatively dense forest habitats we studied, vocal signals will
be much less sensitive to attenuation than visual ones
(Goldingay 1994) and it therefore seemed appropriate to
focus on patterns of vocalisation for this investigation. Given
this, a key aim of this paper was to model relationships
between vocal activity (see below) and bird abundance.

Definitions of vocal activity

Vocal communication in birds includes what Catchpole and
Slater (1995) define variously as songs, calls, phrases,
syllables and elements (or notes) (see Fig. 1), although they
(and others, e.g. Thorpe 1961) readily acknowledge that

strict differences in these types of vocalisations are not
always clear cut.

Our study area at Tumut was characterised by a relatively
large number of species (>90), often with a large number of
individuals (see Cunningham et al. 1999; Lindenmayer et al.
2002). In addition, there is substantial interspecies variation
in the length of a call (e.g. three seconds for a single call by
a grey shrike thrush, Colluricuncla harmonica,  v. up to two
continuous minutes for a single call of the white-throated
treecreeper,Cormobates leucophaeus). Moreover, the length
of calls varied substantially even for a particular individual
of a given species. It proved impossible to extract individual
songs, calls, phrases and syllables (sensu Catchpole and
Slater 1995) from our recordings and assign them to a single
given bird or bird species. This was particularly true for
species that often formed large flocks with many individuals
vocalising simultaneously, such as the sulphur-crested
cockatoo (Cacatua galertia), yellow-faced honeyeater
(Lichenostomus chrysops) and pied currawong (Strepera
graculina). Given these considerations, we have interpreted
and extracted ‘elements’ (sensu Catchpole and Slater 1995)
(i.e. individual musical notes) data for individual species.
These data were then aggregated for each species and
provide a measure of bird vocalisation for each 10-min
recording. Hereafter, we refer to this measure as ‘vocal
activity’ and we use the term ‘notes’ to refer to the individual
elements of the bird call.

Examples of five and two notes respectively are set out
below:

(e.g. satin bowerbird, 
Ptilonorhynchus violaceus).

In the second example, there can be a marked difference
in the pitch of the two notes (such as the descending
vocalisation of the satin bowerbird).

Research themes

To assess the value of data extracted by us from automatic
sound recording of bird sounds we:

(1) Examine the statistical properties of vocal activity data
as recorded by automatic sound recorders and
interpreted by an ornithologist for a selection of birds
and groups of birds.

(2) Model the relationships between vocal activity and bird
abundance. This was an interesting avenue of
investigation because few other researchers have used
sound recorders in such types of ecological studies
(reviewed by Baptista and Gaunt 1997). In a notable
exception, Haselmayer and Quinn (2000) used sound
recordings to capture bird vocalisation data in

p

Fig. 1. Classification of types of vocalisations by birds (redrawn
from Catchpole and Slater 1995).
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rainforests in south-eastern Peru and compared sound
recordings and point counts to estimate species richness.

(3) Discuss the estimation of a statistical model where
problems include heteroscedasticity, skewness, and
multiplicative relationships. The presence of these
statistical features in a single problem is unusual and, as
such, the solution provides a novel case study.

(4) Examine relationships between the number of species
detected by sound recorders and by human observers.
This was a valuable avenue of investigation because
equipment for measuring vocalisations in birds has
strong theoretical potential as a survey tool (see Baptista
and Gaunt 1997) but the approach has yet to be subject
to rigorous statistical appraisal.

As many workers in ecology are expected to undertake
statistical analyses, or at least have an understanding of the
many issues involved in modelling data, the statistical
methodology presented in this paper will be of interest to
biologists. In addition, for several bird groups, we present an
interpretation of our data and, in particular, examine the
usefulness of data obtained by sound recorders for
estimating bird abundance. A detailed account of how vocal
activity changed with time during the early morning and
whether these changes were consistent across different
landscape context classes (as defined below) is discussed in
a companion paper (Lindenmayer et al. 2004).

Methods

A permanent transect was established in 1996 at each of 165 sites in the
Buccleuch, Bungongo, and Bondo State Forests and Kosciuszko
National Park near Tumut in south-eastern Australia (the midpoint of
the study area was 35°10′S, 148°40′E). The sites were classified
according to the landscape context in which they were located:
patch-shaped eucalypt remnants surrounded by stands of radiata pine
(Pinus radiata) plantation (45 sites), strip-shaped eucalypt remnants
surrounded by stands of radiata pine (40 sites), stands of radiata pine
forest (40 sites), and large areas of continuous eucalypt forest (40 sites).
Full details of the study area, the experimental design and its
implementation are given in Lindenmayer et al. (2002).

A second, small calibration study was conducted in Namadgi
National Park in the Australian Capital Territory in November 2001.
This study involved the simultaneous recording of bird vocal activity
and human counts of birds. Five-minute point counts of birds and sound
recording were completed at 18 sites by two observers over six days.

Sound recording

Recordings of the vocal activity of birds were made using a
weatherproof automatic recording device that enables continuous
recording for a specified interval. The recording device consisted of a
tape recorder housed within a metal ammunition box. A microphone
was attached to a metal pole 2 m above ground level. An insulated cable
connected the microphone to the tape recorder. The sensitivity of the
microphone was 320 µV and 200–600 Ω. The recording system
contained an automatic programmable switching system that enabled
the device to be switched on or off for varying periods pre-set by the
user. Regular charging of the tape recorders meant that the tape speed
of the recording was constant, thereby preventing the distortion of
sound during real-time playback analysis. More detailed specifications
on the sound recorder can be obtained from the commercial outlet

responsible for their design and construction (Faunatech Wildlife
Technical Consultants, Bairnsdale, Victoria).

Sound recorders were deployed at the start (0 m point) and the
middle (300 m point) along the flagged transect at each site – the
precise location where two of the point-interval counts at each site also
were completed (see below). For the 85 eucalypt remnants, the
recording stations corresponded to the edge and (approximately) the
middle of the sites. The sound recorders captured vocal activity data for
a total of 60 min at each of the two stations on each site, both in late
February/early March 1997 and again in November 1997. The
November recording period occurred immediately after the counts of
birds by humans (by the point-interval method) of the same sites, as
described below. November is also the period when most birds are
breeding and have established territories at Tumut. Recording began at
0600 hours and the recording intervals selected were 0600–0610, 0610–
0620, 0620–0630, 0700–0710, 0800–0810 and 0900–0910 hours on the
same morning. It took 12 days to complete recordings of all sites using
the 30 devices that were available. A spell of clear, still days was
selected to conduct the recording.

Sound playback and interpretation

Cassette tapes from the sound recorders were played back on a
high-fidelity system consisting of an Aiwa 717 Stereo Cassette Deck,
Rotel RX-845 Amplifier and twin Krix Brix speakers. As recorded in
the field, some tapes had high levels of unpleasant low-frequency
background noise. The signal-to-noise ratio at playback was greatly
improved by adjusting the bass and mid-range volume controls on the
amplifier to the minimum position and the treble to the maximum
position. All tapes were subsequently played back at these settings, with
small adjustments in volume made as required, using the overall volume
control.

One of us (BDL) listened to all recordings, and interpreted the bird
vocalisations. Data on each species’ vocalising and the number of notes
produced by each taxon were collated for each 10-min interval.
Vocal-activity data were collated, giving, for each position at each site,
the total number of notes produced by each bird species during each of
the 10-min periods. Where unidentified vocalisations were
encountered, the position on the tape counter was noted. These short
time segments were replayed using, if necessary, different bass,
mid-range, treble or overall volume settings. In the few cases where this
procedure did not result in identification, the segments with
unidentified vocalisations were dubbed onto a consolidation tape for
identification by others (DBL and H. A. Nix). This process resulted in
the resolution of all unknown vocalisations.

The noise-filtration procedure used above probably did not result in
any significant loss of vocalisations. For example, the low-frequency
notes of the common bronzewing (Phaps chalcoptera) were recorded
on several occasions while, at the other end of the sound spectrum, there
were also several records of the call of the rufous fantail (Rhipidura
rufifrons) which is beyond the capacity of detection of some cassette
players (Bird Observers Club of Australia 2002, p. 108).

Human counts of birds

Point-interval counts of birds were undertaken in early November 1997.
At a given site, sound recordings and point counts were not done
simultaneously, but usually within several days of each other. To
facilitate sampling, a permanent transect was established at each of the
165 field sites. For radiata pine sites, sites in continuous areas of native
forests, and the 63 eucalypt remnant sites of area >3 ha, a transect (600
m long × 50 m wide) was set out. For the eucalypt remnant sites of area
<3 ha, the length of the transect was scaled relative to area. In the case
of the eight eucalypt remnant sites of area 1–2 ha, a 200-m transect was
established. A 400-m-long transect was established for the 14 eucalypt
remnant sites of area 2–3 ha. A continuous line of coloured flagging
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tape was set out along the centre of each transect and points marked
every 100 m, starting at 0 m. Thus, for most sites, bird data were
recorded at seven plots using a 5-min point-interval count (sensu Pyke
and Recher 1983).

In the study region, late October–early November is the peak
breeding season when most summer migrants are present and birds
have established territories and exhibit strong patterns of site fidelity.
For each point count, observers recorded the numbers of each bird
species seen or heard within 100 m of the plot point. Birds flying over
transects were recorded but not included in the analysis. Counts were
completed between 0530 and 0930 hours and were not undertaken on
days of poor weather (rain, snow, high wind, heavy fog or heavy cloud
cover). Data for each species can be expressed as a detection frequency
(number of plots on a site in which at least one individual was detected)
or as an abundance (= the total number of birds detected). Previous
work showed that there was a strong relationship between detection
frequency and the number of birds counted (Lindenmayer et al. 2002).

Fifteen experienced bird observers from the Canberra Orni-
thologists Group participated in the bird surveys in 1997. All sites were
surveyed in November 1997 and ~50% of the remnant sites were
sampled a second time during that year. Different observers were used
for the repeat counts. Although observers were experienced, they varied
in their ability to detect some (but not all) groups of birds. Cunningham
et al. (1999) showed that averaging the counts of two or more observers
at the same site could compensate for extra variability due to observer
heterogeneity. It was not possible to undertake counts in February and
March 1997 because of the lack of availability of highly experienced
volunteer observers.

Statistical Methods

Selection of response variables

Ninety species of birds were recorded during the point-count surveys at
Tumut (see Lindenmayer et al. 2002) and a further eight species were
added from the interpretation of the tapes from the sound recorders. The
number of notes produced by a given bird species within a 10-min
period of sound recording varied from zero to 1400, with up to 20
species vocalising in that time. For example, flocks of the
sulphur-crested cockatoo and the pied currawong were common, with
many birds vocalising simultaneously. The vocalisations of even single
birds (such as the white-throated treecreeper; rose robin, Petroica
rosea; and scarlet robin, Petroica multicolor) sometimes continued
virtually without pause, for minutes on end. As outlined above, given
the number and complexity of vocalisations, it was not possible to
record more complex assemblages of notes such as ‘calls’ and ‘songs’
(as defined by Catchpole and Slater 1995).

Rather than attempt to summarise and report details of statistical
analyses of vocal-activity data for all 90 species, we have chosen to
report results for several ‘representative’ groups of birds. An additional
advantage of aggregating data within groups of birds is that the number
of zeros in the responses is reduced, thus making standard distributional
features more likely. We therefore present results for the following:

(1) Total vocal activity (for all birds combined).
(2) Vocal activity for birds in the following groups:

(a) Understorey and undercanopy birds – brown thornbill
(Acanthiza pusilla), silvereye (Zosterops lateralis), satin
flycatcher (Myiagra cyanoleuca), leaden flycatcher
(Myiagra rubecula), grey fantail (Rhipidura fuliginosa),
rufous fantail, and the white-browed scrub-wren (Sericornis
frontalis).

(b) Honeyeaters – yellow-faced honeyeater, red wattlebird
(Anthochaera carunculata), white-eared honeyeater
(Lichenostomus leucotis), noisy friarbird (Philemon

corniculatus), and the brown-headed honeyeater (Meli-
threptus brevirostris).

(c) Large birds – sulphur-crested cockatoo, yellow-tailed black
cockatoo (Calyptorhyncus funereus), crimson rosella
(Platycercus elegans), Australian magpie (Gymnorhina
tibicen), and the pied currawong.

(3) Vocal activity for each of the following individual species as
example taxa:
(a) Grey fantail, yellow faced honeyeater, rufous whistler

(Pachycephala rufiventris), and the crimson rosella.
(4) The total number of species vocalising (vocal ‘richness’).

During the course of our analysis, data on many other individual
bird species and other groups were examined. As statistical features
were similar to those for the chosen set of responses listed above,
detailed results are not reported here.

Statistical model for vocal activity data: relationships between vocal 
activity and abundance

In this section, we examine the distributional properties of
vocal-activity data and explore relationships between the numbers of
notes and data on bird abundance obtained from point-interval counts
made by observers. To achieve compatibility between sound-recording
data and observer data and to ensure independence of observations,
vocalisation data were aggregated over periods and over positions and
restricted to November 1997 data only (i.e. the time when the
point-interval point counts were undertaken). The three (radiata pine)
sites where no vocal activity was recorded or no birds were observed
were excluded from our analysis.

We use data for the honeyeater group to illustrate the development
of our model. Fig. 2 shows scatter plots of vocal activity versus the
number of birds on different scales. Heteroscedasticity (i.e. non-
constant variance) is strongly evident on the natural scale and, to some
extent, on the log–log scale. Linearity seems reasonable on all scales
and is convincing on the square-root and cube-root scale.

Initially, it seemed reasonable to assume that vocal activity would be
proportional to the total abundance of birds, which implies that effects
are multiplicative. If direct proportionality applied, then the natural
measure of the note broadcast rate, viz.

number of notes / number of birds

will not depend on abundance. This assumption was checked by
studying the relationship between the frequency of note production and
bird abundance on the logarithmic scale (linearity is likely to apply on
a log–log scale) which is the appropriate scale if effects are
multiplicative. Classical least-squares was used to test the fit of the
simple linear regression model after removing zeros from the data, and
transforming both variables to log(number of notes) and
log(abundance), viz.

E[log(number of notes)] = β^ 0 + β^ 1 log(number of birds),

where E[log(number of notes)] is the expected or mean of the log of the
number of notes and ^β0 and ^β1 are estimates of the usual regression
parameters β0 and

 β1 respectively.
This analysis generally supported the log–log linearity assumption,

but it gave rise to diagnostics (Fig. 3) that implied that transforming the
data did not provide an appropriate solution to the problem. The
residual versus fitted-values plot showed patterns of variance that
tended to decrease with the fitted values, suggesting that the
transformation tended to overcorrect for the heterogeneity in variance
in raw counts.

As our data on the number of bird notes are extensive, the sum of
the notes should have a well defined physical meaning (i.e. the
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aggregate quantities are meaningful), and it is statistically more elegant
to avoid methods based on transformation (McCullagh and Nelder
1989). One remedy to the problem is to apply ordinary weighted
least-squares analysis on the natural scale, where the weights are
determined empirically and will depend on the variance. However,
multiplicative effects will not apply on this scale.

Further analysis of our vocalisation data showed that the relationship
between log(variance) and log(mean) was strong and linear with a slope
greater than 1.0. This is a property consistent with that of
Gamma-distributed data (ie. a constant coefficient of variation across the
range of data). In the case of Gamma-distributed data, an appropriate
variance-stabilising transformation is a cube-root transformation rather
than the log-transformation (McCullagh and Nelder 1989). This scale
seems appropriate for analysis of bird-vocalisation data, except for the
direct interpretation in terms of multiplicative effects.

We have therefore chosen to model the vocalisation data as
independent Gamma random variables whose densities have the same
shape parameter and whose expectation E[number of notes] is related
to bird numbers and habitat variables in a multiplicative way. That is:

log(E[number of notes]) = β
^

0 + β
^

1 log(number of birds) + habitat 
variables.

This model combines a log link with Gamma distributions and
belongs to the general class of models known as Generalized Linear
Models (GLM) (McCullagh and Nelder 1989). The diagnostic plots of

the model fit without habitat variables (Fig. 4) revealed that the
residuals were consistent with a normal distribution and had
approximately constant variance, again indicating that the Gamma
distribution fitted the data well.

The above model can be easily extended to examine lists of habitat
and other variables as explanators of vocal activity. Thus, our plausible
model for vocal activity will be of the form:

E[number of notes] = exp{β
^

1 + log(number of birds) + β
^

1log(number 
of birds)+ xi

T ^β},

where xi
T ^β is a linear predictor of habitat and other variables.

That is, E[number of notes] is related to bird numbers and habitat
variables in a multiplicative way. Results from this model can easily be
expressed in terms of broadcast rates as it incorporates the term
log(number of birds) as an offset variable, a variable without a parameter.
The value of the regression estimate, β^ 1,  for the variable log(number of
birds) measures the departure from direct proportionality.

A weak relationship (or no relationship) between log(E[number of
notes]) and log(bird abundance) translates into a strong inverse
relationship between broadcast rate and abundance (i.e. as bird
abundance increases the number of notes per bird [broadcast rate]
decreases). Thus, inferences about the effects of covariates on broadcast
rates should be made after first controlling for, or adjusting for,
differences in abundance. In such cases, this is essentially equivalent to
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making inferences about factors affecting the number of notes
produced, rather than broadcast rate, as the adjustment effectively
cancels the effect of normalising the number of notes by abundance –
the effect of an offset variable.

As is usual with GLMs in which the scale (or, in this case, the shape)
parameter has to be estimated, models are compared by calculating a
mean deviance as the ratio of deviance to degrees of freedom; the ratio
of two mean deviances is taken as having an approximate
F-distribution. Goodness of fit is assessed by plotting observed and
fitted values, on an appropriate scale, and by examining the usual
residual plots.

Our multiplicative model with Gamma-distributed observations fits
our bird vocalisation data well, but for most datasets there were several
large residuals; observations leading to large residuals have been set
aside for these analyses. Our approach was found to be an appropriate
and elegant modelling strategy for our bird-vocalisation data.

Results
The statistical modelling process described above has been
applied to all responses, for both site-level data (data

aggregated over time periods and positions) and data
aggregated to the landscape-context-class level (i.e. over ~40
sites). Although the latter results are based on four data
points only (i.e. the four landscape-context classes), they
demonstrate how our results differ according to the level of
aggregation of the bird-vocalisation data obtained by sound
recordings and so provide insight into an important feature of
these data.

As described above, the emphasis of our analysis has been
on the quantification of relationships between number of
notes produced and the number of birds, given the observed
number of birds. Alternative specifications of the problem
(other than regression-type model) may include treating the
number of birds as a mathematical variable with
measurement error. Such discussion, as well as discussions
pertinent to treating the data as bivariate, are beyond the
scope of this paper.
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Vocal activity – all birds

The very weak relationship (slope = 0.0885, s.e. = 0.0557)
between log(total number of notes) and log(bird abundance),
as measured by human observers (Fig. 5), translates into a
strong inverse relationship between broadcast rate (number
of notes per bird) and abundance. This result was
counter-intuitive, as it is natural to believe that, in general,
the number of notes would increase in direct proportion to
increases in the number of birds. However, for aggregate data
(i.e. data aggregated over sites within forest-type classes)
there was evidence for direct proportionality between vocal
activity and abundance (slope = 0.983, s.e. = 0.133). This
demonstrates that our results vary considerably according to
the level of aggregation. One plausible interpretation of this
result is that, for site-level data, the true relationship between
vocal activity and abundance may be obscured by the

aggregation (across species) process, resulting in high
variability in measurement.

As there was only a weak relationship between total notes
and abundance for site-level data, we therefore present
broadcast rates (number of notes per bird) for data further
aggregated over sites within landscape-context classes. (Fig.
5d). For these data, there was evidence that broadcast rates
were higher in eucalypt remnants than in large continuous
areas of eucalypt forest and in stands of radiata pine.

Vocal activity – understorey and undercanopy birds

As in the case for all birds (see above), there was only a very
weak relationship (slope = 0.184, s.e. = 0.0519) between the
number of notes and the abundance of understorey and
undercanopy birds (Fig. 6). However, for aggregate data (i.e.
data aggregated over sites within landscape-context classes)
there was evidence for direct proportionality between notes
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and abundance (slope = 1.521, s.e. = 0.845). For these birds,
there was evidence that broadcast rates based on aggregate
data were lower in eucalypt forest and stands of radiata pine
than in remnant patches (Fig. 6b).

Vocal activity – honeyeaters

The numbers of notes recorded at the site level for
honeyeaters was approximately proportional to the
√abundance (slope = 0.402, s.e. = 0.063) (Fig. 7). The fit for
aggregate data gave a slope of 1.269 with s.e. = 0.075.
Broadcast rates derived from aggregate data were low in pine
and slightly elevated in strip-shaped remnants (Fig. 7b).

Vocal activity – large birds

For large birds, the number of notes for site-level data was
approximately proportional (slope = 0.80, s.e. = 0.077) to

abundance as obtained by point counts (Fig. 8); this was
consistent with aggregate data for this group (slope = 1.464,
s.e. = 0.286). Hence, an appropriate measure of the broadcast
rate for site data was (number of notes)/abundance for this
group. For these data, there was a suggestion that broadcast
rates for large birds were lower in radiata pine than in
eucalypt remnants (Fig. 8b).

Vocal activity of particular species

For the grey fantail, the yellow-faced honeyeater and the
crimson rosella, site-level data on the number of notes
produced was (approximately) proportional to the square
root of abundance, as obtained by point counts. The number
of notes recorded for the rufous whistler was roughly
proportional to the cube root of counts of birds. Fitted lines
and data are shown in Fig. 9.
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Fig. 5. The relationship between the number of notes and the abundance of all birds for (a) site-level data denoted by × and
the fit by the solid line, and (b) number of notes per bird (broadcast rate) based on aggregate data for each landscape-context
class.

Fig. 6. The relationship between the number of notes and the abundance of understory and undercanopy birds for (a) site-level
data denoted by × and the fit by the solid line, and (b) number of notes per bird (broadcast rate) based on aggregate data for each
landscape-context class. 1 = continuous forest, 2 = remnant patch, 3 = pine forest, and 4 = remnant strip.
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One plausible explanation for the lack of a relationship for
all birds (and understorey and undercanopy birds) was the
lack of synchrony between the recording of bird vocalisations
and the point counts made by humans. This effect was
examined by a study of the relationship between total notes
recorded and number of birds, controlling for synchrony,
using data obtained in the trial conducted at Namadgi
National Park in November 2001. Fig. 10 shows that even if
recording is undertaken at the same time as observers are
counting birds, there remains only a weak relationship
between the number of notes and the number of birds counted.

Number of species vocalising

For the Tumut study, there was a relationship between the
number of species vocalising, as measured by sound
recorders, and the number of species observed by
point-count method (P < 0.001) (Fig. 10). However, the
relationship was far from isometric (slope = 0.30, s.e. =

0.07), and there were many more species detected by the
sound recorders than by human observers (Fig. 11).

Discussion

Recording and measuring vocal activity

The large number of different species of birds vocalising
simultaneously, coupled with the volume of vocalisations
produced, made it impossible for us to differentiate
individual calls recorded on sound recorders. However, we
were able to obtain data on individual notes and assign them
to species. These data were used to explore and model
relationships between vocal activity and bird abundance.
This involved fitting a regression model that was log-linear
in form (i.e. multiplicative on the natural scale), with the
response having a skewed distribution and clear hetero-
scedasticity. A satisfactory solution to this interesting
statistical problem was found by using a Gamma model.
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Fig. 7. The relationship between the number of notes and the abundance of honeyeaters for (a) site-level data denoted by
× and the fit by the solid line, and (b) number of notes per bird (broadcast rate) based on aggregate data for each
landscape-context class. 1 = continuous forest, 2 = remnant patch, 3 = pine forest, and 4 = remnant strip.

Fig. 8. The relationship between the number of notes and the abundance of large birds for (a) site-level data denoted
by × and the fit by the solid line, (b) number of notes per bird (broadcast rate) based on aggregate data for each
landscape-context class. 1 = continuous forest, 2 = remnant patch, 3 = pine forest, and 4 = remnant strip.
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A feature of our data for the total number of notes for all
birds and also for understorey and undercanopy birds was the
lack of a relationship between the aggregate number of notes
and abundance. Given the nature of our measure of bird
vocalisations and the level of aggregation across many
species having fundamentally different calls, it is not
surprising that relationships for site-level data were weak.
Further exploration of the data showed that when the number

of notes and abundance data were aggregated over the ~40
sites in each of the landscape-context classes, there was
evidence of direct proportionality between the total number
of notes produced and bird abundance. For several bird
groups, evidence of a relationship between the two
measurements at the site level was therefore inconsistent
with the relationship expected to apply at the level of
individual observations. This is not the case when data are
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Fig. 9. The relationship between the number of notes and abundance at the site-level for (a) grey fantail, (b)
yellow-faced honeyeater, (c) rufous whistler, and (d) crimson rosella.

Fig. 10. (a) The relationship between the number of notes and the abundance of all birds counted at the same
time, and (b) the relationship between the number of notes and the abundance of all birds counted on a different
day. 
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aggregated over many sites. Thus, our data exhibit a (not
uncommon) feature that relationships differ according to the
level of grouping – a statistical feature known as the
‘ecological fallacy’ (Piantadosi et al. 1988). Furthermore,
because of the very heterogeneous nature of our vocalisation
data, effects calculated as averages of a ratio (broadcast
rates) over sites will not be the same as effects calculated as
ratios of averages – the ‘fallacy of averages’. These features
raise the possibility that for some groups of birds, data
measured, extracted and aggregated in this way (viz. sound
recorders and human observations of abundance) may not be
informative for making inferences relating to factors
affecting the number of notes produced per bird (= broadcast
rates).

This discrepancy was further illustrated by the weak and
far-from-isometric relationship between the number of
species detected by the sound recorders and the number of
species detected by human observers. The number of species
detected by humans was roughly a lower bound for the
number detected by the sound recorders. It is important in
this regard that the detection of more species by a particular
method does not necessarily mean that it is a better method
– accuracy in field identification is also an issue (see
Cunningham et al. 1999). Moreover, given the amount of
listening time that can be required to interpret the tapes
produced by sound-recording devices, their extensive use to
survey for the presence of bird species may not be the most
efficient field method in comparison with standard human
observer efforts. However, this problem could be overcome
by the use of automated recognition software for various bird
species (e.g. Mills 1995).

For large birds, however, the relationship between the
number of notes and abundance was roughly proportional
irrespective of the level of aggregation. These birds produce
loud vocalisations and often vocalise frequently, making

them more likely to be detected by both the sound recorders
and by human observers. Although not as strong, a similar
result was obtained for the honeyeater group. For this group,
relationships were apparent for both site-level data and
landscape-context-level data. Thus, for species in which
patterns of vocalisation such as the length of songs and calls
are similar, aggregations make sense and so sound recorders
may provide useful data. However, in cases where species
maintain quite different patterns of vocal activity, data
aggregation across species will obscure underlying
relationships and patterns.

Although sound recorders were used immediately after
the completion of the point-interval count surveys at Tumut,
they were not used synchronously. Therefore, some changes
in bird abundance and assemblages may have taken place in
that time, although such differences are unlikely to have been
large enough to create the observed differences, given the
large amount of data collected. Our subsequent field trial at
Namadgi National Park showed that the lack of relationship
could not be attributed to asynchrony in data collection. In
conclusion, our data and associated analyses raise questions
about the value of the measurement instruments used here,
particularly for measuring vocal broadcast rates in bird
communities and also for making inferences about bird
abundance.

Several studies have demonstrated strong positive
relationships between the availability of food resources and
vocal activity, not only in birds (Gottlander 1987) but also for
organisms such as frogs and invertebrates (Gerhardt 1994;
Wagner and Hoback 1999). We have calculated and
presented data on broadcast rates for data aggregated over
species and sites. We have chosen this scale as there was
some evidence, albeit based on four data points, that direct
proportionality between the number of notes and the number
of birds seemed reasonable. In this investigation, radiata pine
sites could be places with limited food resources for some
groups of birds because, unlike stands of native eucalypt
forest, these trees do not support nectar, fleshy fruits, and
lerp (the sugar-rich coating produced by nymphal stages of
phloem-feeding insects). Birds in territories located in stands
of radiata pine may, in turn, need to allocate more time for
foraging and less time to vocalising (see Radesäter et al.
1987), perhaps reflecting what Møller (1991) and other
authors (e.g. Kroodsma and Byers 1991; Galeotti et al. 1997)
consider to be lower ‘male quality’ and hence attractiveness
to potential female mates in such lower-productivity areas.
Indeed, for example, some studies have found that individual
birds with high rates of vocalisation were the first to mate
(Gottlander 1987) or achieved the most matings (Loffredo
and Borgia 1986).

In the case of data from eucalypt forest, although overall
vocal activity tended to be greater in large areas of
continuous eucalypt forest, when the data were normalised
for abundance, vocal activity tended to be greatest in the
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eucalypt remnants. The exception was for honeyeaters, for
which broadcast rates were highest in large areas of
continuous eucalypt forest. Higher aggregate broadcast rates
for most groups in eucalypt remnants compared with large
areas of continuous eucalypt forest was unexpected. It is
possible that a combination of resources provided by both
eucalypt remnants and adjacent stands of radiata pine may
benefit some species of birds. The two different types of
forest may provide quite different (but complementary)
foraging substrates and any additional resources (if they
occur) may provide the basis for increased broadcast rates.
Notably, as outlined above, other studies have demonstrated
that additional food resources can lead to higher and more
prolonged rates of vocalising in birds (e.g. Davies and
Lundberg 1984; Reid 1987; Cuthill and MacDonald 1990).
Further studies are needed to determine whether there are in
fact more food resources available to birds in eucalypt
remnants and the links (if any) to vocal activity. Removal
experiments such as those by Radesäter and Jakobsson
(1989) where patterns of vocal activity of birds in particular
territories are documented and then compared with
replacement birds occupying the same territories could be
useful in this regard.
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The Combined Effects of Remnant Vegetation
and Tree Planting on Farmland Birds
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Abstract: Biodiversity conservation on agricultural land is a major issue worldwide. We estimated separate

and joint effects of remnant native woodland vegetation and recent tree plantings on birds on farms (ap-

proximately 500–1000 ha) in the heavily cleared wheat and sheep belt of southern Australia. Much of the

variation (>70%) in bird responses was explained by 3 factors: remnant native-vegetation attributes (native

grassland, scattered paddock trees, patches of remnant native woodland); presence or absence of planted

native trees; and the size and shape of tree plantings. In terms of the number of species, remnant native

vegetation was more important than tree planting, in a 3:1 ratio, approximately. Farms with high values for

remnant native vegetation were those most likely to support declining or vulnerable species, although some

individual species of conservation concern occurred on farms with large plantings. Farm management for

improved bird conservation should account for the cumulative and complementary contributions of many

components of remnant native-vegetation cover (e.g., scattered paddock trees and fallen timber) as well as

areas of restored native vegetation.

Keywords: farmland birds, landscape restoration, native remnant woodlands, replanted native vegetation

Efectos Combinados de la Vegetación Remanente y la Siembra de Árboles sobre Aves de Tierras Agŕıcolas

Resumen: La conservación de la biodiversidad en tierras agŕıcolas es un tema importante mundialmente.

Estimamos los efectos separados y combinados de la vegetación nativa remanente y las plantaciones recientes

de árboles sobre aves en ranchos (∼500–1000 ha) en la zona ampliamente deforestada para trigo y ovejas

en el sur de Australia. Mucha de la variación (>70%) en las respuestas de aves fue explicada por 3 factores:

atributos de la vegetación nativa remanente (pastos nativos, árboles nativos aislados, fragmentos de bosque

nativo remanente); presencia o ausencia de árboles nativos plantados y el tamaño y forma de las plantaciones

de árboles. En términos del número de especies, la vegetación nativa remanente fue más importante que los

árboles plantados en una proporción 3:1, aproximadamente. Los ranchos con altos valores de vegetación na-

tiva remanente fueron los más propensos a soportar especies en declinación o vulnerables, aunque algunas

especies individuales de interés para la conservación ocurrieron en ranchos con plantaciones extensas. El

manejo del rancho para mejorar la conservación de las aves debeŕıa considerar las contribuciones acumula-

tivas y complementarias de muchos componentes de la vegetación nativa remanente (e.g., árboles aislados y

madera caı́da) aśı como de las áreas con vegetación nativa restaurada.

Palabras Clave: aves de tierras agŕıcolas, bosques nativos remanentes, restauración del paisaje, vegetación
nativa resembrada

Introduction

Protected areas are a core strategy to conserve biodiver-
sity around the world (Margules & Pressey 2000), but

∗email ross.cunningham@anu.edu.au
Paper submitted May 22, 2007; revised manuscript accepted October 22, 2007.

many studies demonstrate that reserves alone will not be
sufficient to conserve all biodiversity (e.g., Craig et al.
2000). Conservation strategies will be critical in places
used for commodity production such as multiple-use
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forests (Lindenmayer & Franklin 2002) and agricultural
areas (Daily et al. 2003; Tscharntke et al. 2005).

Off-reserve conservation is critical in the agricultural
land that was formerly dominated by temperate wood-
lands in the South West Slopes region of New South Wales
(NSW) in southeastern Australia. This area is the most
heavily modified bioregion of NSW (Benson 1999) and
supports few formal large reserves. Remaining areas of
temperate woodland occur almost entirely on privately
owned or leased land (Prober & Thiele 1995; Linden-
mayer et al. 2005), and they support many threatened,
temperate, woodland vegetation communities (Depart-
ment of Environment and Water Resources 2007) and
many declining, temperate, woodland bird species (Reid
1999; Barrett et al. 2003).

Off-reserve conservation in this and similar regions in
southeastern Australia has focused on patches of rem-
nant native woodland (Reid 1999; Gibbons & Boak 2002;
Seddon et al. 2003). In much of this previous work, re-
searchers examined animal responses at the landscape
level (e.g., Bennett & Ford 1997; Manning et al. 2004)
or at the site or individual-remnant level (Freudenberger
1999) but not at the level of an individual farm. We re-
fer to a farm as a 500- to 1000-ha land holding owned
privately or leased by a given landholder or managed by
a farmer for a large pastoral company. The farm is the
unit of management applicable to many landholders and
the scale at which they make decisions about land use
(Barrett et al. 2000; Cunningham et al. 2007).

Another focus of conservation work in the temperate
woodland regions of southeastern Australia has been on
the value areas of deliberately planted native vegetation
on farms (e.g., Martin et al. 2004; Kavanagh et al. 2005).
Despite large investments in planting programs, their ef-
fectiveness for biodiversity conservation remains poorly
known. The few studies that have been completed focus
on the site level; farm-level impacts have rarely been ex-
amined. Moreover, although most planting efforts occur
in landscapes that also support remnant vegetation, the
conservation benefits arising from the cumulative effects
of planted and remnant vegetation are unknown. That is,
the cumulative effects of the 2 kinds of vegetation have
not been explored previously.

We sought to quantify the response of individual bird
species and overall bird species richness to vegetation
attributes on farms, including native revegetated areas
(i.e., tree plantings). We addressed the following ques-
tions that are of broad importance to the conservation
of biota on farms: Which native-vegetation features on
a farm are important for bird species richness and indi-
vidual bird species? What is the relative value for native
birds of remnant woodland versus planted native vegeta-
tion? Do areas of remnant vegetation and planted areas
combine to effect bird responses? On which farms will
restoration be most efficient? That is, will restored areas
lead to the greatest relative increase in bird species rich-

ness on farms with limited remnant native woodland or
on farms on which much of the remnant native vegeta-
tion remains? In addition to addressing these questions,
we discuss, as short case studies, the effects of vegetation
attributes on declining woodland bird species (sensu Reid
1999).

The importance of conservation in agricultural areas
is increasingly recognized worldwide (e.g., Daily et al.
2001; Benton et al. 2003; Fischer et al. 2005). A growing
number of studies from around the world indicate that
the management of different components of vegetation
cover within areas broadly designated for agriculture can
make a significant contribution to the persistence of na-
tive species from many taxa (e.g., Laiolo 2004; Schmitz et
al. 2007; Sirami et al. 2007). Nevertheless, the relative im-
portance and the combined contribution of different veg-
etation components, including sites planted or restored
for biodiversity, remain poorly understood.

Methods

Study Area and Survey Design

We studied the southern half of the South West Slopes
region of NSW, which encompasses the Murray River
and Murrumbidgee River catchments. The study area in-
cluded the towns of Junee (36◦ 05′S, 146◦ 56′E) in the
north, Albury (34◦ 52′S, 147◦ 55′E) in the south (a dis-
tance of approximately 150 km), and Gundagai (35◦ 04′S,
148◦ 07′E) and Howlong (35◦ 59′S, 146◦ 38′E) in the
east and west, respectively (a distance of approximately
120 km).

Remnant native vegetation in the South West Slopes re-
gion is dominated by temperate-woodland (sensu Hobbs
& Yates 2000) tree species such as white box (Eucalyptus

albens), gray box (E. microcarpa), and other tree species
such as yellow box (E. melliodora), Blakely’s red gum (E.

blakelyi), red stringybark (E. macrorhyncha), and red
ironbark (E. sideroxylon). Wetter areas along creeks and
streams support river red gum (E. camaldulensis).

We focused on the South West Slopes region because it
has been the target of extensive planting programs over
the past 2 decades to mitigate, in particular, problems
associated with soil erosion and salinity. Plantings were
a mix of locally endemic and nonlocal Australian ground
cover, and understory and overstory plant species. All
plantings we surveyed exceeded 7 years of age and many
were 10–20 years old.

We surveyed 23 landscapes; a landscape was de-
fined as a relatively homogenous circular area covering
10,000 ha. We based landscape selection on aerial pho-
tographs, satellite imagery, and ground truthing. We clas-
sified landscapes into 1 of 6 remnant × planting cover
classes: >15% and <9% cover of remnant vegetation and
>1%, 0.5–0.9%, and <0.2 planting intensity. We selected
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4 landscapes in each of the 6 remnant × planting cover
classes except for the high–high class where only 3 land-
scapes were available.

We selected 2 farms in each of the 23 landscapes. These
46 farms were predominately wheat cropping or sheep
(Ovis aries)/cattle (Bos taurus) grazing enterprises. In
landscapes with plantings, one farm with plantings was
chosen and the other without plantings. On a given farm
we selected 4 sites each of 1 ha (200 × 50 m). On the 23
farms without plantings, all sites were patches of remnant
native vegetation, where possible covering the full range
of woodland vegetation spanning regrowth to old-growth
woodland. Generally for the 23 farms with plantings, 2
sites were established in plantings and 2 in woodland
remnants. We ensured that survey effort was equal across
farms rather than proportional to the area of each vege-
tation type. This is appropriate for comparative studies
of this type. For each farm, we surveyed the range of
available types of native vegetation but excluded gar-
dens surrounding homesteads and crops and pastures.
For farms with plantings, medians for the area of native
woodland remnants and cleared land were 32 and 915
ha, respectively. Corresponding figures for farms with-
out plantings were 106 ha of native woodland remnants
and 890 ha of cleared land. Our hierarchical design en-
compassed 184 sites nested within 46 farms that were
nested within 23 landscapes.

Vegetation Data and Other Covariates

The farms we selected for study varied in levels of rem-
nant native woodland cover, amount of planting of native
vegetation, and other attributes. We used aerial photogra-
phy, satellite imagery, and ground truthing field surveys
to collate data on a wide range of vegetation attributes
on farms. The key farm attributes we measured were (1)
area of woodland remnants, (2) edge index for woodland
remnants, which was the total of combined perimeters
(meters) of remnant woodland vegetation divided by total
area of remnant woodland vegetation on a farm, (3) area
of plantings, (4) edge index for plantings on farms (plant-
ing edge), which was the total of combined perimeters of
plantings divided by total area of plantings on a farm, (5)
amount of standing and fallen dead timber scored from 1
to 4 for low to high amounts, (6) number and distribution
of scattered paddock trees scored from 1 to 4 for low to
high numbers, and (7) amount of native grassland within
and surrounding each of the 4 sites on a farm scored
from 1 to 4 as a surrogate measure of extent. Variables
measuring area were log transformed prior to analysis.

Bird Counts

We recorded bird data in spring 2002, winter 2004, spring
2004, and spring 2006 at the 0-, 100- , and 200-m points
along a fixed transect that was permanently established
at each of 184 sites. The 4 surveys in different years and

seasons ensured a wide coverage of temporal effects. For
each point-interval count (sensu Pyke & Recher 1983),
we recorded all bird species seen or heard during a 20-
min period within and outside the fixed sites.

Cunningham et al. (1999) show that averaging the
counts of 2 or more observers at the same site may com-
pensate for extra variability due to observer heterogene-
ity. Field et al. (2002) showed that weather and other con-
ditions on any given day can affect bird detectability. Our
surveys involved counts conducted over approximately
14 days in which each of our 184 sites was surveyed by 2
observers on different days. No counts were undertaken
on days of poor weather (rain, high wind, fog, or heavy
cloud cover).

Preliminary Data Analysis

We aggregated bird data to give the number of detections
of a given species over 4 sites on a farm by 4 years. A bird
was considered present at a site if it was observed by at
least one observer on at least one plot, and we assumed
that nondetection of most birds was low. We then treated
our data as proportions data—the number of detections
divided by the number of possible detections (16), which
yielded what we termed occupancy rate. Hence, for sub-
sequent statistical analyses, the underlying response for
each bird was the probability of occupancy; the observed
realization of this probability was the occupancy rate.

Excluding gardens surrounding homesteads and crops
and pastures, we endeavored to survey all available vege-
tation types on each farm. Thus, we considered our data
provided reasonable measures of the occupancy rate of
birds on farms that would support subsequent inferences
to be made about the effects of farm attributes on bird-
occupancy rates.

Statistical Methods

For those bird species we detected on 5 or more farms,
we estimated a slope parameter for each of the vegetation
attributes described earlier (for presence of tree planting
this was simply a dummy variable: 1 if the farm had plant-
ings and 0 otherwise) by fitting a linear logistic-regression
model (McCullagh & Nelder 1989). These parameters
provided a measure of the rate of change in log odds
of occupancy of a given bird species for a unit change in
given vegetation attribute. We estimated parameters by
weighted least-squares regression (McCullagh & Nelder
1989). We then conducted a principal component anal-
ysis (Digby & Kempton 1987) on the slope parameters
divided by their corresponding standard errors (to stan-
dardize for the differences in scale of the input variables).

Based on the results of principal component analysis,
we defined several key composite indices. These were
then substituted for the vegetation attributes in linear
logistic regression as above. We then used slope param-
eters from these analyses to classify birds into groups.
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Table 1. Vector loadings from principal component analysis of bird
responses to vegetation attributes.∗

Dimension

Attribute 1 2 3

Amount of fallen timber 0.140 0.315 −0.226
Amount of native grassland 0.431 −0.178 0.638
Area of plantings 0.000 −0.582 0.146
Edge index for plantings 0.017 0.410 −0.134
Number of paddock trees 0.529 0.087 0.068
Area of woodland remnants 0.499 0.094 −0.365
Edge index for woodland

remnants
−0.52 0.127 0.181

Effect of planting presence 0.002 −0.574 −0.576

∗Dimension 1, 2, and 3 account for 54.1%, 15.5%, and 9.2% of the

variation, respectively.

Summary statistics from these groups were then calcu-
lated and interpreted.

Results

We recorded 159 bird species from repeated field sur-
veys (for scientific names and common names see Sup-
plementary Material), of which 124 occurred on 5 or
more farms, and we deemed them suitable for detailed
statistical analyses. Approximately 70% of the total vari-
ation in the effects of vegetation components on bird
species was accounted for in 2 dimensions of the princi-
pal component analysis. The first dimension accounted
for approximately 54% of the between-species variability
(Table 1), and it was a composite measure of the native
grassland, paddock trees, and remnant woodland area,
offset by the edge index for native woodland remnants.
The second dimension accounted for approximately 16%
of the total variation in the effects of vegetation compo-
nents on bird species. This dimension was predominately
a composite of the planting-presence effect and the size
of plantings offset by the planting-edge effect. Fallen tim-
ber also was a minor contributor. Major contributors to
the third dimension (approximately 9% of variation) were
the effect of planting and the effect of native grassland.

Indices of Vegetation Cover

On the basis of the above results, we constructed 3
vegetation-cover indices that accounted for the majority
of variability in the effects of vegetation attributes on bird
occupancy between farms. Two of these indices (1 and 3,
see below) were composites, so an adjustment for differ-
ent scales was made by standardizing all input variables
(by subtracting the mean and dividing by the standard
deviation). The 3 indices were (1) remnant native vegeta-
tion, which excluded tree plantings (paddock tree index
+ native pasture index + log[remnant area(ha)] – edge

index of remnants) (a low score corresponded to a highly
modified farm); (2) planting presence (the difference in
the odds of occupancy between farms with tree plantings
and those with none), which is the same as the planting
effect used as an input variable in the principal com-
ponent analysis and was derived for each bird species
by fitting a dummy variable, designating whether tree
plantings were present (1) or not (0) on the farm, in the
logistic-regression analysis; (3) planting size and shape
given plantings are present (log[planting area (ha)] – edge
index of plantings) (high score corresponded to a larger
number of block-shaped planted areas, whereas a low
score indicated small plantings in linear strips). For ease
of interpretation, we separated the planting-presence ef-
fect from the planting-size and planting-shape index.

Farm Birds and Composite Vegetation Indices

For each bird species the slope parameter for each of
the 2 new vegetation indices (1 and 3) was estimated
by fitting a linear logistic-regression model (McCullagh &
Nelder 1989). These parameters provided a measure of
the rate of change in log odds of detection of a species for
a unit change in each of the 2 indices. The second index
was the same as the original planting effect, which was
an input variable in the principal component analysis.

We cross-classified all 124 bird species detected on
5 or more farms according to the significance of their
response to both the remnant native-vegetation and the
planting-presence indices (as determined by the absolute
value of t statistic >2) and given significance, whether
the response was positive, negative, or neutral (Table 2).
We also identified significant responses to the planting-
size and planting-shape index. The 37 taxa in the posi-
tive cells for the remnant native-vegetation index were
significantly more likely (p < 0.05) to occur on farms
where there were large areas of remnant vegetation, nu-
merous scattered paddock trees, and large areas of na-
tive grassland (Table 2), for example, Brown Treecreeper
and Sacred Kingfisher (Fig. 1). Other typical members
of this group included known declining species (after
Reid 1999) such as the Speckled Warbler, Hooded Robin,
Crested Shrike-Tit, and Jacky Winter.

Examples of the 5 negative responders to the remnant
native-vegetation index (Table 2) included the introduced
House Sparrow, the Brown Songlark (a bird closely asso-
ciated with cropped areas), and the Fairy Martin (typ-
ically associated with human infrastructure). None of
these negatively responding species were threatened or
declining (sensu Reid 1999).

Fifteen species of birds responded positively to the
planting-presence index (Table 2). Birds that responded
significantly to the planting-size and planting-shape in-
dex included the Red-capped Robin and the Buff-rumped
Thornbill (Table 2). A positive effect (e.g., Red-capped
Robin) corresponded to bird species more likely to occur
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(a)

(b)

Figure 1. The predicted relationship between

occupancy rate and the native-vegetation farm index,

and associated 95% confidence intervals for (a)

Brown Treecreepers and (b) Sacred Kingfishers.

on farms characterized by many plantings, in particular,
many large, elliptical, or block-shaped plantings.

Bird Species Richness and Farm Vegetation

Seventeen species (termed group 1 birds) responded pos-
itively to both the presence of tree plantings and plant-

ing size and shape (Table 2), and 37 species (group 2)
responded positively to the remnant native-vegetation in-
dex (Table 2). On average, an additional 3.4 (95% CI: 1.9,
4.9) species from group 1 were present on farms with
plantings, of which farms with >20 ha of plantings had
one additional species. Furthermore, the effect of plant-
ing was significantly (p = 0.036) greater on farms with
low to medium values for the remnant native-vegetation
index (4.7 species, 95% CI: 2.9, 6.5) compared with farms
with high values for the remnant native-vegetation index
(0.5 species from group 1). On average, for a 2-unit in-
crease in the native-vegetation index, 3 (95% CI: 2, 5)
additional species from group 2 were added.

Summing predicted probabilities of occupancy for dif-
ferent levels of the indices showed the expected increase
in the number of species of group 1 due to plantings was
1.6 (95% CI: 1.33,1.71) for a given farm. Conversely, the
expected loss in species of group 2 due to extensive
clearing of native vegetation was 7.0 (95% CI: 6.6–7.4)
per farm.

Farms with a high value for the remnant native-
vegetation index and that supported plantings (particu-
larly many large planted areas) were those on which the
overall number of bird species was maximized (Fig. 2).
Farms with high values for the remnant native-vegetation
index were typically those most likely to support birds
of high conservation value (e.g., declining or vulnerable
species), although farms with large plantings also can

Figure 2. Number of species from group 2 (exhibit a

positive response to native-plant index) versus the

number of species from group 1 (exhibit a positive

response to tree plantings) for 46 farms. The size of the

symbols correspond to the lower, middle, and upper

tercile values of the remnant native-vegetation index.

Solid symbols correspond to farms with plantings.
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be important for some individual species of conservation
concern (Table 2).

Discussion

We classified bird species according to their responses
to the effects of remnant native vegetation and planted
areas and highlighted the responses of threatened and
declining species. Our results offer new insights into
how species respond individually and collectively to rem-
nant native vegetation and plantings on farms. They have
broad relevance to conservation programs and restora-
tion efforts on farms elsewhere around the world, in-
cluding the Americas and Europe, where biodiversity
management is an important part of better-informed agri-
cultural production (e.g., Kerr & Deguise 2004; Laiolo
2004; Vandermeer & Perfecto, 2007) and a fundamental
part of agroenvironment schemes (Kleijn & Sutherland
2003; Kleijn et al. 2004).

Responses to Farm-Level Remnant Native Vegetation

Many bird species responded strongly to the joint ef-
fect of a range of different remnant native-vegetation at-
tributes that occur on a farm—the occurrence of large
blocks of woodland remnants, the number of scattered
paddock trees, and the amount of native grassland. This
finding highlights the importance of individual elements
of remnant vegetation structure and composition and
demonstrates they have a combined effect on the re-
sponse of many species. Many of the species that re-
sponded positively to the remnant native-vegetation in-
dex (Table 2) have declined substantially in the past few
decades (Reid 1999; Barrett et al. 2003) and for which
there are major conservation concerns. Examples are the
Brown Treecreeper (Cooper & Walters 2002), Jacky Win-
ter (ACT Government 2004), and Crested Shrike-Tit (Ford
et al. 2001). A range of factors may underpin these de-
clines and no single threatening process or combination
of processes appears to be common to the array of de-
clining woodland-bird taxa (Ford et al. 2001).

Quantifying Revegetation Effects

Our results highlight the importance of tree-planting pro-
grams for bird conservation on grazing and cropping
properties and the complementary role played by planted
areas and existing remnant native-vegetation cover on
farms (e.g., scattered paddock trees, native pastures, and
woodland remnants) (Fig. 2). Furthermore, for a given
farm there would be an expected increase of 2 bird
species from group 1 due to the establishment of tree
plantings, but an expected loss of 7 species from group 2
if remnant native vegetation was cleared. Thus, one of the
key findings of this study was that not only did we iden-
tify candidate species that benefit from tree planting but

we also estimated the average gain in species richness.
Conversely, we nominated possible taxa lost and the av-
erage loss in species richness due to extensive clearing
of remnant native vegetation.

We found an important interaction effect between rem-
nant native vegetation and planted native vegetation on
bird species richness. Plantings added more taxa to over-
all species richness when a farm had a low remnant
native-vegetation index than when values for this index
were high.

In terms of species gained, the remnant native-
vegetation index was more important than the planting-
presence index, roughly by a ratio of 3:1. Nevertheless,
some birds responded negatively to the remnant native-
vegetation index. Thus, it is plausible that some extra
species may be recruited by having areas of a farm with
low remnant native-vegetation index (i.e., highly modi-
fied areas) (Fig. 2), but none of them would be of conser-
vation concern.

Individual Species of Conservation Concern

We identified interesting patterns for a number of high-
profile declining woodland birds. For example, several
studies have raised concerns about the decline of the
Brown Treecreeper and highlighted problems with the
dispersal ability of the species (Walters et al. 1999; Doerr
& Doerr 2005). We identified a strong positive relation-
ship between the remnant native-vegetation index and
the probability of occurrence of the Brown Treecreeper
(Table 2). Conversely, the species was less likely to occur
on farms with plantings (Table 2). Perhaps, the negative-
planting result was an outcome of the limited quantities
of dead timber and hence suitable foraging habitat for the
Brown Treecreeper in planted areas (M.C. et al., unpub-
lished data). This accords with knowledge of the habitat
requirements of the species, such as its preference for
areas with large quantities of fallen timber (Laven & Mac
Nally 1997). Two tentative conclusions from these find-
ings are that (1) conservation efforts for the species might
be best focused on farms that already exhibit high levels
of native-vegetation cover (where birds are more likely to
occur) and (2) it may take many years before farm plant-
ings support the kinds of attributes that make such areas
suitable for the Brown Treecreeper.

The extensive suite of currently declining wood-
land bird taxa include the Diamond Firetail, Hooded
Robin, Jacky Winter, Crested Shrike-Tit, Scarlet Robin,
Red-capped Robin, Rufous Whistler, Speckled Warbler,
Southern Whiteface, Eastern Yellow Robin, and Flame
Robin (Reid 1999; Barrett et al. 2003). The first 4
species responded positively to the native-vegetation
index (Table 2). This suggests they might be lost from
places where there is a decline in the attributes that con-
tribute to the remnant native-vegetation index. Of the 11
species listed earlier, only the Scarlet Robin and Rufous
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Whistler responded positively to the presence of plant-
ings. Hence, our data suggest that the negative effects of
losses of attributes of native vegetation for species such
as the Diamond Firetail, Hooded Robin, Jacky Winter,
and Crested Shrike-Tit might not be offset by planting
elsewhere on a farm, at least in the short to medium
term. By contrast, the Red-capped Robin showed neu-
tral responses to the farm-level remnant native-vegetation
and planting-presence indices but a strong positive re-
sponse to the planting-size and planting-shape index (Ta-
ble 2). One interpretation of this is that the scrubby en-
vironments often used by this species (particularly in
winter in the study area) rarely occur on farms with
low values for the native-vegetation index, but may be
created in large planted areas. Finally, 4 species—the
Speckled Warbler, Southern Whiteface, Eastern Yellow
Robin, and Flame Robin—showed neutral responses to
all indices we constructed, suggesting there are other
unidentified factors influencing their distribution and
abundance.

Our results for a suite of bird species of conservation
importance indicate that (1) remnant native vegetation
on farms is critical for many declining bird species, (2)
plantings provide suitable habitats per se for 3 of them,
and may potentially offset the loss of remnant native veg-
etation, but (3) for other species, plantings may not offset
such losses of native vegetation, at least not for decades
into the future.

Management Implications

Approaches that enhance the conservation value of farms
are not always straightforward (Fischer et al. 2008). This
is particularly true when different types of vegetation can
occur on a single farm and the value of this vegetation
for biota may have combined effects (Sekercioglu et al.
2007). Our results demonstrate that many components
of remnant native vegetation can have significant posi-
tive benefits for farmland birds. Moreover, through the
development of composite indices, we have highlighted
their combined effects on birds as well as their cumulative
(and/or complementary) contribution to bird responses
made by planted native vegetation. Hence, discussions
about the integration of conservation and production
on farms need to extend beyond conserving patches of
remnant native woodland above a certain size (Freuden-
berger 1999) or maintaining particular levels of vegeta-
tion cover above perceived threshold values (e.g., 30%
see Lindenmayer & Luck 2005). Given this, one of our
key management recommendations is to manage farms
in ways that ensure they support many components of
native-vegetation cover (see also Barrett et al. 1994; Bar-
rett 2000).

We make an additional recommendation that relates
to prioritizing vegetation management. That is, for most
farms and most bird species, biodiversity management

should focus first on conserving and enhancing existing
areas of remnant native vegetation and second on plant-
ing. This recommendation is based on the relative contri-
bution these sets of features make to bird species richness
and the occurrence of particular species of woodland
birds that are declining and that can occur on a farm.

The combined effects of different vegetation elements
on farm birds—that is, landscape heterogeneity (sensu
Forman 1995)—was highlighted in this investigation. Our
findings echo the results of other studies around the
world that emphasize the critical importance of land-
scape heterogeneity for the persistence of native biota
in agriculture-dominated systems. These include investi-
gations in northern and southern Europe (Benton et al.
2003; Laiolo 2004; Tscharntke et al. 2005), North Amer-
ica (Kerr & Deguise 2004), Central America (Daily et al.
2001; Ricketts et al., 2001; Mayfield & Daily 2005), and
Africa (reviewed by Manning et al. 2006). For example,
Benton et al. (2003) recognize that a key step toward
conserving biodiversity in agricultural areas in Europe is
maintaining and restoring heterogeneity within and be-
tween fields on farms.

Our findings also reinforce the additional contribution
to the persistence of biota made by relatively small native-
vegetation elements such as native grassland, scattered
paddock trees, and small remnants (see also Schwartz
& Mantgem 1997; McCoy & Mushinsky 1999; Fischer &
Lindenmayer 2002; Manning et al. 2006; Harvey et al.
2007). Hence, these kinds of structures and small areas
should not be ignored simply because they are small (Sek-
ercioglu et al. 2007). The corollary is that combined losses
of these vegetation elements through activities such as
agricultural intensification have the potential to lead to
significant losses of farmland biodiversity (Benton et al.
2003; Laiolo 2004; Tscharntke et al. 2005).
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Abstract. As early morning bird vocalisation is a major feature of many bird communities, longitudinal profiles
of vocal activity data, collected using sound recorders, were compared for a range of habitat types in the Tumut area
of south-eastern Australia. There was a significant, and roughly linear, decline in vocal activity across the morning
after an initial early peak of activity. Vocal activity persisted longer at sites located within large areas of continuous
eucalypt forest than in the strip- and patch-shaped eucalypt remnants surrounded by extensive stands of radiata pine
or at sites dominated by stands of radiata pine. There was evidence that the pattern of persistence of vocal activity
differed among the different bird groups.
WR02063
Longi tudinal profi les  i n bir d vocal  act ivi tyD. B. Lindenm ayer et al .

Introduction

The simultaneous vocalisation by many birds species around
sunrise, commonly referred to as the ‘dawn chorus’, is a
major feature of bird communities in many environments
ranging from deserts to tropical rainforests (Welty 1963;
Morton 1975; Kacelnik and Krebs 1982; Keast 1994a).
While the phenomenon has attracted widespread attention,
there have been few attempts to quantify temporal patterns of
vocal behaviour during this period (but see Leopold and
Eynon 1961; Henwood and Fabrick 1979; Keast 1994a). A
quantitative examination of the dawn chorus and how bird
vocalisations change during the morning is important
because early mornings are when most bird survey work is
undertaken (Davies 1984; Recher 1988) and estimates of
species presence and abundance and other measures such as
species richness are derived.

Data on bird vocalisations in forests can be valuable in a
range of conservation- and management-related ways such
as allowing a rapid evaluation of bird assemblages
(Haselmeyer and Quinn 2000; Cunningham et al. 2004),
the discovery of the presence of previously undescribed
species (Baptista et al. 1983; Robbins and Howell 1995)
and for assessing animal fitness and population stability
(reviewed by Baptista and Gaunt 1997; McGregor et al.
2000). Further, altered patterns of vocalisation could have
important impacts on bird population dynamics such as
changing the chances that dispersing individuals will land
in habitat fragments (Smith and Peacock 1990), or locate
key communal breeding areas such as leks (Baptista and
Gaunt 1997).

In this paper, we quantify temporal patterns of morning
vocalisation (termed ‘longitudinal vocal activity profiles’) in

forests east of Tumut in south-eastern Australia, for a
selection of birds and groups of birds and explore how these
differ between landscape contexts, forest types, and seasons.

Methods
Study area

The study area encompassed the Buccleuch, Bungongo, and Bondo
State Forests and Kosciuszko National Park near Tumut in south-eastern
Australia (midpoint = 35°10′S, 148°40′E). The Bungongo and Bondo
State Forests as well as Kosciuszko National Park are extensive areas of
continuous eucalypt forest. The Buccleuch State Forest is an extensive
plantation (55000 ha) of exotic radiata pine trees. The plantation was
first established in the mid-1930s, and the area of radiata pine forest has
continued to expand since then. Most of the plantation was established
on areas that formerly supported native eucalypt forest. Some areas of
the original forest cover escaped clearing and are now eucalypt remnants
surrounded by the softwood plantation in the Buccleuch State Forest.
Further details of the study area near Tumut are reported in Lindenmayer
et al. (2002) and Cunningham et al. (2004).

For the purposes of the work reported in this paper, we defined four
broad classes of forest cover (termed ‘landscape contexts’) in the study
area. These were: (1) extensive stands of exotic softwood radiata pine
plantation (the Buccleuch State Forest); (2) remnants of native eucalypt
forest embedded within the radiata pine plantation – these were
classified into two broad shape classes (see Lindenmayer et al. 2002):
(a) circular or elliptical-shaped remnants (‘patches’), and (b) narrow
linear strip-shaped remnants (‘strips’) which often contained
watercourses; and (3) large continuous areas of native eucalypt forest
that occur at the northern, eastern and southern boundaries of the
radiata pine plantation.

A single site was selected in each of 85 eucalypt remnants; 40 were
chosen in large areas of continuous eucalypt forest, and 40 in stands
dominated by radiata pine forest. Full details of the study design and its
implementation are given in Lindenmayer et al. (1999a, 2002).

Sound recording

Recordings of bird vocal activity were made using several weatherproof
automatic recorders. These enable continuous recording of bird
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vocalisation for a specified interval. The measure chosen for this study
was the aggregate value for ‘elements’ (sensu Catchpole and Slater
1995) (i.e. individual musical notes) for particular species and groups
of species for a 10-min recording period. This measure is referred to as
‘vocal activity’. We also use the term ‘notes’ to refer to the individual
elements of bird song and which, for this study, together comprise vocal
activity. Full details of the device, the interpretation of the bird
vocalisations recorded and the definition of an appropriate measure are
given in Cunningham et al. (2004).

Sound recorders were deployed at the start (0-m point) and the
middle (300-m point) of the 600-m-long flagged transect we
established at each site. For the 85 eucalypt remnants, the recording
stations corresponded to the edge and (approximately) the middle of the
sites. The sound recorders recorded vocal activity for 60 min in six
10-min periods at each of the two stations on each site both in late
February/early March 1996 and again in November 1996.

The February/March recording period was after the breeding
season, but before most migratory taxa had left. For both sampling
periods, sound recording began at 0600 hours. The subsequent
recording intervals were 0600–0610, 0610–0620, 0620–0630,
0700–0710, 0800–0810 and 0900–0910 hours. Thirty sound recorders
were available for use in February/March 1996 and November 1996. It
took 12 days to complete recordings of all sites. A spell of clear, still
days was selected to conduct the recording. Recorders were assigned to
sites in such a way that confounding between random weather effects
and other key factors in our study (e.g. landscape context) was
minimised. This was important because weather is known to have a
significant impact on bird vocalisation (Keast 1994b).

For each site, the aggregate number of notes produced by each bird
species during each period was extracted and counted (by BDL) from
the tapes.

Statistical Methods
Selection of response variables

Given that 98 species of birds were detected with our sound recorders,
rather than attempt to summarise and report details of statistical
analyses of vocal activity data for each of them individually, we report
results for several ‘representative’ groups of birds. As outlined by
Cunningham et al. (2004), an advantage of aggregating data within
groups of birds is that the number of zeros in the responses is reduced,
thus making standard distributional features more likely. We therefore
present results for the following:

(1) Total vocal activity (for all birds combined).
(2) The total number of species vocalising (vocal ‘richness’).
(3) Vocal activity of birds in the following groups:

(a) Understorey and undercanopy birds – brown thornbill
(Acanthiza pusilla), silvereye (Zosterops lateralis), satin
flycatcher (Myiagra cyanoleuca), leaden flycatcher
(Myiagra rubecula), grey fantail (Rhipidura fuliginosa),
rufous fantail (Rhipidura rufifrons), and the white-browed
scrub-wren (Sericornis frontalis).

(b) Honeyeaters – yellow-faced honeyeater, red wattlebird
(Anthochaera carunculata), white-eared honeyeater
(Lichenostomus leucotis), noisy friarbird (Philemon
corniculatus), and the brown-headed honeyeater
(Melithreptus brevirostris).

(c) Large birds – sulphur-crested cockatoo, yellow-tailed black
cockatoo (Calyptorhyncus funereus), crimson rosella
(Platycercus elegans), Australian magpie (Gymnorhina
tibicen), and the pied currawong.

(4) Vocal activity of the grey fantail, as a species-level example of a
bird response.

During the course of our analysis, vocal activity of other groups and
individual bird species were examined but are not reported here.

Statistical model

For a given response, vocal activity data were classified by the
following factors: site (165) × season (2) × position (2 = edge and centre
of the sites – see above) × period (6) = 3960 rows. Examination of the
variation in responses in relation to landscape context, season, position,
period and other covariates was achieved by fitting an appropriate linear
mixed model (ANOVA) to our data. The general linear mixed-model
approach of transformed (cube root) data deals with the complicated
dependence structure in our vocal activity data. The cube-root scale
seemed satisfactory for additivity, remedied the heterogeneity of
variance problem, and was consistent with the Gamma model described
in Cunningham et al. (2004). The model includes random variance
terms associated with sites, seasons, positions within sites, and
recording periods. The fixed factor ‘landscape context’ and other
covariates occur at the site level in the design. Fixed factors for season
and position occur at levels associated with the corresponding random
factors. Finally, the factor ‘time’ is associated with the repeat
observations within seasons, sites and positions (i.e. periods). The
inclusion of random terms for each level of the design accounts for
possible dependence between observations within sites. Furthermore, it
is likely that observations between periods will be serially dependent
and the extent of this correlation will be a function of the number of
minutes separating observations, even after accounting for systematic
difference between time points.

As our focus was on patterns of vocal activity during and after the
dawn chorus, it was helpful to think of our data as 165 × 2 × 2 = 660
longitudinal vocal activity profiles; a selection of these is shown in
Fig. 1. Thus, for any given response variable, we were interested in
comparing the longitudinal vocal activity profiles between landscape
contexts, positions, and seasons, as well as values for other covariates.
To do this, the effects of landscape context and the landscape context by
time interaction (and associated standard errors) were estimated by
modelling variation in the response as a linear function (after
transformation) of landscape context and time effects and the landscape
context by time interaction effects. The variance of observations
depended on the component variance associated with sites and the
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Fig. 1. Example longitudinal vocal activity profiles (see text) for a
selection of sites in remnant patches of eucalypt. The y-axis is the total
number of notes of all species and the x-axis is time (from 0600 to 0910
hours).
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covariation of observations between periods within sites. Empirical
variograms were used as a diagnostic tool to explore patterns of
temporal correlation in vocal activity data and to determine an
appropriate correlation model for the repeated-measures data. An
unstructured correlation matrix was found to better account for the
serial dependence between observations within sites than the common
exponential correlation model.

Results

Vocal activity – all birds

There was strong evidence (P < 0.001) that vocal activity for
all birds (i.e. for all birds species combined) was lower in the
radiata pine sites than in other landscape-context classes
(Fig. 2a) and the total number of notes produced also was
much higher in October/November (the breeding season)
than in March (P < 0.001) (Fig. 2b). Vocal activity declined
significantly (P < 0.001) across the morning and there was
also evidence (P = 0.003) that the longitudinal vocal activity
profiles differed between landscape-context classes (a
landscape context × period interaction effect) (Fig. 2c). High
levels of vocal activity in continuous eucalypt forest
persisted longer (past 0800 hours) than in other landscape
contexts. For remnants, there was evidence (P = 0.006) that

vocal activity was greater in larger eucalypt patches and
strips (e.g. those more than 10 ha) than in smaller eucalypt
patches and strips (Fig. 2d).

Number of species vocalising
The mean number of species vocalising was greater in
November than in March (P < 0.001) (Fig. 3b). It was also
much lower in radiata pine sites than in other landscape
contexts (P < 0.001), with some evidence that vocal
‘richness’ was higher in continuous forest than in eucalypt
remnants (Fig. 3a). Apart from a small spike at 0610 hours,
there was linear (P < 0.001) decline in the number of species
calling across the morning (Fig. 3c).

Vocal activity – understorey and undercanopy birds
Statistically significant (P < 0.001) landscape context ×
season and period × season effects were found for
understorey and undercanopy birds. Vocal activity for
understorey and undercanopy birds was significantly lower
in large areas of continuous eucalypt forest than in the other
landscape contexts, with greatest levels of vocal activity
being recorded in strip-shaped remnants) (Fig. 4a, b).
Longitudinal vocal activity profiles were noticeably different
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between seasons. There was no evidence for a decrease in
vocal activity across the morning, as observed in other
groups during November. However, a strong temporal
decline was evident in the longitudinal vocal activity profile
for March (Fig. 4c).

Vocal activity – honeyeaters

There was a significant (P < 0.001) landscape-context effect
on vocal activity for honeyeaters, but the pattern among
landscape-context classes was not consistent between
seasons (P < 0.001). This effect could be attributed to large
difference in vocal activity between November and March
for all landscape-context classes except radiata pine, where
vocal activity was lower in both seasons. There was evidence
(P = 0.011) that temporal patterns (i.e. the longitudinal vocal
activity profiles) were quite different depending on the type
of site. For example, vocal activity for honeyeaters within
large continuous areas of eucalypt forest first increased and
then persisted until ~0800 hours before declining, whereas in
the eucalypt remnants it began declining after ~0630 hours
(Fig. 5). There was evidence (P = 0.006) that vocal activity
increased with size of remnant (Fig. 5d).

Vocal activity – large birds

Landscape-context effects on longitudinal vocal activity
profiles for large birds differed between seasons (P < 0.001).
Fig. 6 shows the somewhat complex patterns for this group.

Vocal activity of the grey fantail

Fig. 7 shows the mean longitudinal vocal activity profile for
the grey fantail, a species for which we found significant
landscape-context × season (P < 0.001) and period (P =
0.052) effects. Among the interesting results for this species
was the weak evidence of a difference between strip-shaped
remnants and other eucalypt forest in November – an effect
that did not occur in March (Fig. 7a, b). Furthermore, there
was evidence of a drop in vocal activity from 0600 until 0700
hours followed by a second peak at 0800 hours (Fig. 7c).

Discussion

Quantifying the trends in vocal activity during and after the 
dawn chorus

Factors affecting measurement and cross-sectional
variability in counts do not play a major role in inferences
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Fig. 5. Significant effects for vocal activity in honeyeaters: (a, b) landscape context × season effect, (c) mean longitudinal
vocal activity profile for each landscape context class, and (d) eucalypt remnant area effect.
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relating to changes in time as site effects are intrinsically
controlled for. Thus, sound recorders can provide useful
intrasite vocal activity data for studying patterns in the
longitudinal profiles. For our data, the within-site variance is
much smaller than the between-site variance and the
correlation between aggregate notes produced within sites
was high (>0.90) for observations separated by 10 min.

The concept of a dawn chorus in bird communities is a
well known phenomenon (Keast 1994a; Welling et al. 1995)
but it has rarely been quantified, not only in Australia but
also elsewhere. Data obtained by interpreting automatic
sound recordings have allowed us to study patterns of
vocalisation during and after the dawn chorus for a range of
bird groups in forests east of Tumut. In general, our data
confirmed the previously known general decline in vocal
activity across the morning to 0900 hours. The initial flush
of vocal activity is believed to assist birds help confirm their
ownership of a territory (Dilger 1956; reviewed by Catchpole
and Slater 1995) and maintain pair bonds through intrapair
signalling (Kroodsma and Byers 1991; Welling et al. 1995).
Several other (sometimes interrelated) reasons have been
proposed for increased vocalisations by birds early in the
day. They include:

(1) Weather conditions at dawn (such as air temperature,
humidity and wind), which make vocal propagation
more effective early in the morning (Henwood and
Fabrick 1979).

(2) Foraging conditions at dawn (Kacelnik and Krebs
1982). Birds can allocate more time to vocalising earlier
in the day because lower temperatures at that time mean
that invertebrate prey are inactive. In addition, light
levels are reduced earlier in the morning, making
hunting for prey by sight difficult.

(3) Overnight predation of resident birds (Garson and
Hunter 1979). Birds may be preyed upon during the
night, leaving empty territories. The following morning
is the time to occupy a territory left vacant overnight and
left undefended without a resident bird vocalising to
advertise its occupancy.

(4) Breeding biology. Ovulation is believed to take place
early in the morning in some species of birds (Mace
1987) and, as the amount of vocalising by a male bird is
considered to reflect its ‘quality’ as a potential mate
(Møller 1991; Kroodsma and Byers 1991), this might be
the best time for copulation to take place and to increase
the likelihood of successful paternity (Catchpole and
Slater 1995).

A declining trend in vocal activity across the morning was
not consistent between groups of birds. For example, no
pronounced decline occurred for honeyeaters (Fig. 5) or for
understorey and undercanopy birds in spring (Fig. 4). In
other cases, the pattern of decline in vocal activity decreased
across the morning in complicated ways, sometimes peaking
after the commencement of recording before subsequently
declining (e.g. for all species: Fig. 2). In addition, the decline
in overall vocal activity was not consistent across the
landscape-context classes; typically, the pattern of decline
was more rapid and pronounced in radiata pine than in
eucalypt forest. The rate of decline was slowest in large areas
of continuous eucalypt forest – trends that are explored
further in the following section.

Landscape context and vocal activity

Vocal activity for each bird group was almost always lower
in the radiata pine sites than in sites in other landscape
contexts. At first glance, one might attribute this result to the
fact that fewer birds occur in these exotic (plantation) forests.
It is not clear that this result is simply due to the fact that
there are fewer birds in radiata pine (see Cunningham et al.
2004) as there was essentially no relationship between the
amount of vocal activity and bird abundance for site-level
data (see Cunningham et al. 2004). However, broadcast rates
calculated from aggregate data provide some supporting
evidence for this interpretation (Cunningham et al. 2004).
Thus, it seems that not only is bird abundance affected by
factors related to landscape context (as quantified in
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Lindenmayer et al. 2002), but also vocal activity. Possible
reasons for this effect are outlined below.

It is also possible that the landscape-context differences in
vocal activity might be associated with differences in the
availability of food resources. As discussed in Cunningham
et al. (2004), vocalising in birds has an energetic cost and the
limited quantities of flower-based food resources in radiata
pine stands (such as nectar, seeds and fruit) may curtail the
amount of surplus energy available to allocate to sound
production or increase the amount of foraging time required
to collect adequate food resources. This explanation would
be consistent with work by several authors who have
demonstrated that vocal activity decreases with decreasing
food resources (e.g. Davies and Lundberg 1984; Reid 1987;
Cuthill and MacDonald 1990).

Some studies have shown that vocalisation rates are
higher in open habitats than in more dense ones (Handford
1988; Catchpole and Slater 1995), and an alternative or
additional explanation for the landscape-context effects we
observed is that they are a result of acoustic differences
between radiata pine stands and areas of eucalypt forest. The
architectures of these two broad types of forest are quite
different, which could have affected signal attenuation. In
comparison with the radiata pine forest, eucalypt stands were

characterised by numerous canopy gaps, lower overall stem
densities, and much greater vertical heterogeneity (sensu
Brokaw and Lent 1999). However, it seems unlikely that
differences in the acoustic properties of forests in the
different landscape-context classes is the full explanation of
the significant variation in vocal activity between them.

Seasonal differences in vocal activity

Marked seasonal effects in overall vocal activity were
observed. It is likely that seasonal differences are related to
differences in bird abundance as well as to the increased
number of notes produced per bird (= increased broadcast
rates, sensu Cunningham et al. 2004). Increased vocal
activity in spring is likely to be associated with breeding
behaviour such as courtship, pair bonding and territorial
defence. Several authors have found that vocal activity is
highest when females are fertile (Møller 1991). In addition,
males who vocalise more frequently often tend to achieve
higher numbers of successful matings (Payne and Payne
1977; Loffredo and Borgia 1986). Sunrise differs between
February/March and November by an hour and the strong
seasonal differences in vocal activity also may be associated
with time of recording from sunrise (recording started at
0600 hours in both seasons). However, there was no
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statistical evidence of a difference in longitudinal profiles
between the two seasons, suggesting that patterns of vocal
activity during the morning chorus are similar between
seasons.

Edge effects and vocal activity

There was no evidence of differences in vocal activity
between the edges and interiors of sites within the eucalypt
remnants at Tumut. This was consistent with the findings of
an earlier study that found no differences in predation rates
on artificial nests placed at varying distances from edges of
different patch types and landscape context classes at Tumut
(Lindenmayer et al. 1999b).

Remnant size and vocal activity

One of the interesting findings was that vocal activity
increased significantly with the size of eucalypt remnants.
This result could be due to a larger number of birds in larger
patches. It also may be due to the increased resources
available in larger patches – an outcome with a similar
underlying cause to the radiata pine versus eucalypt forest
context effect discussed above. However, the remnant size
effect we observed also may be associated with what some
authors have termed ‘conspecific attraction’ (e.g. Reed and
Dobson 1993). Dispersing birds may be more likely to settle
in habitat patches where there are already conspecifics
vocalising (Smith and Peacock 1990; Eens 1994), with the
amount of vocal activity serving as a cue to other birds
indicating habitat suitability (Orians 1966; Alatalo et al.
1982). Therefore, increased activity in larger eucalypt
remnants during spring could be related to birds attempting
to attract mates to colonise these areas. Whatever the basis
for the observed results, they suggest that landscape patterns
such as the one that gives rise to the mosaic of different forest
types at Tumut (i.e. the different context classes) has an
impact on the vocal activity patterns in birds.
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TEMPORAL CHANGES IN VERTEBRATES DURING LANDSCAPE
TRANSFORMATION: A LARGE-SCALE ‘‘NATURAL EXPERIMENT’’
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Abstract. Plantation development is a significant form of landscape change worldwide.
We report findings from a large-scale longitudinal natural experiment that quantified changes
in Australian vertebrates as a former grazing landscape was transformed to one dominated by
a radiata pine (Pinus radiata) plantation. The study included four main ‘‘treatments’’:
woodland remnants surrounded by emerging radiata pine (52 sites, termed ‘‘woodland
treatments’’), stands of radiata pine (10 sites, ‘‘pine controls’’), woodland remnants where the
surrounding landscape remained unchanged (56 sites, ‘‘woodland controls’’), and paddocks
with scattered woodland trees that surrounded the 56 woodland remnants (10 sites, ‘‘paddock
controls’’). In our study region, woodland is distinguished from forest by differences in tree
height, tree spacing, bole length, and canopy development.

Between 1998 and 2006, occupancy rates of ‘‘woodland treatments’’ by most mammals and
reptiles increased linearly. Similar trends occurred in the ‘‘woodland controls,’’ suggesting that
species had increased landscape-wide, rather than displaying year 3 treatment interaction
effects. We cross-classified birds according to the statistical significance and nature of time
trajectories. Groups included those that: (1) declined in woodland treatments in comparison
with woodland controls, (2) decreased within woodland treatments but increased in woodland
controls, (3) declined across the entire study area, (4) increased within woodland treatments in
comparison with woodland controls, (5) increased within woodland treatments but declined in
woodland controls, and (6) increased across the entire study area.

Attributes of woodland treatments significantly associated with temporal changes in bird
occupancy included: (1) age of surrounding pine stands; (2) number of boundaries with
surrounding pines; (3) size of the woodland patches; (4) dominant vegetation type of
woodland patches; and (5) temporal changes in vegetation structure in the woodland
treatments.

Bird species associated with open country and woodland environments were disadvantaged
by landscape transformation, whereas those that benefited were forest taxa and/or habitat
generalists capable of inhabiting pine stands and adjacent woodland patches. Beyond this
generalization, an unanticipated finding was a lack of association between life history
attributes and landscape transformation. We suggest that several key processes are likely
drivers of change at multiple spatial scales. Recognition of such processes is important for
conservation in landscapes transformed by plantation expansion.

Key words: landscape context; landscape transformation; longitudinal study; Pinus radiata; plantation
establishment; southeastern Australia; temporal change mechanisms; woodland remnants; vertebrates.

INTRODUCTION

Around the world, large-scale landscape change

resulting from human land use (UNEP 1999) is a major

driver of altered ecosystem processes (McIntyre and

Hobbs 1999, Foley et al. 2005, Millennium Ecosystem

Assessment 2005) and biodiversity loss (Sala et al. 2000,

Lindenmayer and Fischer 2006). Plantation expansion is

a significant form of landscape transformation world-

wide (Jackson et al. 2005, Food and Agriculture

Organization of the United Nations 2007) and it is an

increasingly common land use in places such as South

America (Estades and Temple 1999), North America

(Haskell et al. 2006), Europe (Shakesby et al. 1996,

Martı́nez-Sánchez et al. 1999), Asia (Cubbage et al.

1996), Japan (Yamaura et al. 2006), Australia (Burns et

al. 1999, Salt et al. 2004), New Zealand (Clout and Gaze

1984, Allen et al. 1995, Dyck 2000), and Africa

(Wethered and Lawes 2003). In 1996, the global area

of plantations exceeded 130 million ha (Cubbage et al.

1996), and in 2001 it was more than 187 million ha

(Food and Agriculture Organization of the United

Nations 2001). Indeed, there is a worldwide trend

toward a greater reliance on wood sourced from

plantations (Food and Agriculture Organization of the

United Nations 2007), with an increasing emphasis on

‘‘industrialized’’ plantation forestry in the southern

Manuscript received 7 June 2007; revised 27 November 2007;
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hemisphere (Franklin 2003). Increasingly, arguments are

being made that plantation establishment can help to

offset net greenhouse gas emissions through carbon

sequestration (Jackson and Schlesinger 2004).

A better understanding of the responses of biota to

landscape transformation, including large-scale planta-

tion establishment and expansion, is pivotal to the

development of effective natural resource management

strategies (Peterken and Ratcliffe 1995, Moore and

Allen 1999, Lindenmayer and Hobbs 2004). Attempts to

improve such understanding have resulted in an

enormous and rapidly growing literature on the effects

of landscape change on biodiversity (reviewed by

McGarigal and Cushman 2002, Fahrig 2003, Linden-

mayer and Fischer 2006). Many of these studies have

noted that an important determinant of the biota that

occupies patches of native vegetation in modified

landscapes is landscape context, or the condition of

the matrix surrounding them (sensu Laurance 1991,

Gascon et al. 1999, Renjifo 2001, Ricketts 2001,

Lindenmayer et al. 2002, Viveiros de Castro and

Fernandez 2004). For the purposes of this paper, we

define the matrix from a conservation biology perspec-

tive and consider it to be areas dominated by nonnative

vegetation used primarily for commodity production

(see Lindenmayer and Franklin 2002:7).

Conditions in the matrix can influence the occupancy

of patches of remnant native vegetation in several ways.

These include: (1) influencing inter-patch movement,

patch colonization, and rescue effects (Hanski 1999,

Revilla et al. 2004, Bender and Fahrig 2005, Haynes et

al. 2006); (2) providing suitable places to forage (Loman

and von Schantz 1991, Rodenhouse and Best 1994),

which can increase the sizes of populations within

patches (McCarthy et al. 2000, Tubelis et al. 2004); (3)

altering regional populations of species (Askins et al.

1987, Gascon et al. 1999) and in turn providing a source

of colonists, which then invade patches from surround-

ing areas (Tocher et al. 1997, Ås 1999, Davies et al.

2001); and (4) altering boundary conditions and

influencing edge effects (Bayne and Hobson 1997,

Harper et al. 2005), including increased levels of

predation and parasitism of animals within patches

(Murcia 1995, Ries et al. 2004).

There is a large literature on the biological attributes

of species that are associated with their risk of decline or

chance of increase in response to landscape transforma-

tion (Thomas and Kunin 1999, reviewed by McKinney

1997, O’Grady et al. 2004, Lindenmayer and Fischer

2006). Among these biological attributes are: (1) the

degree of habitat and niche specialization or generaliza-

tion (Johns and Skorupa 1987, Koh et al. 2004); (2)

mobility (including dispersal ability) (Angermeier 1995,

Lindenmayer et al. 2002, Driscoll and Weir 2005,

Kotiaho et al. 2005) and home range size (Woodroffe

and Ginsberg 1998); (3) body size (Johns and Skorupa

1987, Lindenmayer et al. 2002); (4) mating system and

the complexity of behavior (McKinney 1997, Brashares

2003); and (5) edge sensitivity (Lehtinen et al. 2003).

These biological attributes can be associated with a

species being able to use the matrix (Laurance 1991,

Davies et al. 2001) and tolerate disturbance (Blake 1983,

Balmford 1996, Ricketts 2001, Sekercioglu et al. 2002).

Most studies on the effects of matrix conditions on

patches of native vegetation have been ‘‘snapshot’’ cross-

sectional or observational investigations (sensu Dia-

mond 1986) (reviewed by McGarigal and Cushman

2002, Fahrig 2003, Lindenmayer and Fischer 2006). In

contrast, large-scale experiments and longitudinal natu-

ral experiments (sensu Lindenmayer et al. 2001) of

temporal effects of matrix transformation on patches are

rare (reviewed by Debinski and Holt 2000). A clear

advantage of longitudinal studies over cross-sectional

studies is that they enable relationships between

explanatory variables and a response arising from

covariation between sites to be distinguished from those

arising from covariation within sites.

In 1997, we commenced a large-scale longitudinal

natural experiment to directly quantify changes in

woodland patch occupancy by vertebrates as the

surrounding landscape was transformed from a semi-

cleared grazing landscape to one dominated by an exotic

softwood plantation (Lindenmayer et al. 2001). Our

longitudinal ‘‘natural experiment,’’ known as the Na-

nangroe study, involved gathering data on vertebrates

inhabiting 52 woodland remnants (termed ‘‘woodland

treatments’’) before the transformation of the surround-

ing landscape and then gathering data repeatedly after

the surrounding areas supporting scattered paddock

trees were cleared and stands of exotic plantation

radiata pine (Pinus radiata) established. We matched

these 52 woodland treatments with a set of 56 woodland

remnants (which we term ‘‘woodland controls’’) where

the immediate surrounding landscape was not trans-

formed and remained dominated by scattered paddock

trees and grazing paddocks. Notably, in Australia,

forest and woodland are considered distinctly different

vegetation types characterized by marked differences in

tree height, tree spacing, length of boles, canopy

development, and spacing, as well as several other

features (Specht and Specht 1999).

In this paper, we quantify longitudinal changes in

vertebrate occupancy of woodland remnants over nine

years as surrounding radiata pine plantation stands

matured. We sought to cross-classify species by their

responses to the different treatments in our natural

experiment, and in particular to temporal changes in

surrounding landscape context. We also attempt to

elucidate some of the processes that have given rise to

the emergent patterns of vertebrate occurrence that we

observed. As part of quantifying vertebrate responses to

landscape transformation, we also sought to determine

if broad sets of responses could be associated with

particular functional groups or species with particular

kinds of life history attributes. Hence, we sought to

determine if biological attributes found to be associated

DAVID B. LINDENMAYER ET AL.568 Ecological Monographs
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with species change in other studies (reviewed by

McKinney 1997, Lindenmayer and Fischer 2006) also

were found in this study. Some of our postulated

responses to landscape transformation are outlined in

Table 1.

Much of the recent ecological literature emphasizes

species extinctions resulting from landscape transforma-

tion (Sala et al. 2000, Primack 2001, Groombridge and

Jenkins 2002). However, as implied in Table 1,

landscape transformations may not only produce

declines but also allow some new species to become

established and other formerly rare taxa may become

more abundant (Hobbs et al. 2006, Olden and Rooney

2006). Such changes in species occurrence are a

substantial component of this study and enable us to

better understand the response of biota to landscape

change. Our findings are important for elucidating the

potential impacts on biodiversity of large-scale planta-

tion establishment.

METHODS

Study area

The Nanangroe area is 10�20 km southeast of the

town of Jugiong in southern New South Wales,

southeastern Australia (Fig. 1). The original vegetation

cover in the study area included several woodland

vegetation types, particularly those dominated by yellow

box (Eucalyptus melliodora), red box (E. polyanthemos),

white box (E. albens), red stringybark (E. macro-

rhyncha), and Blakely’s red gum (E. blakleyi). The

vegetation structure of patches of these woodland tree

species can generally be categorized as old-growth

woodland, coppice regrowth woodland, or seedling

regrowth woodland. Coppice regrowth refers to (multi-

stemmed) regrowth from existing living trees recovering

after disturbance by fire, clearing, or both. Seedling

regrowth is natural regrowth originating from seeds

germinating after being dropped by overstory trees. Old-

growth woodland is woodland dominated by large, old

trees, typically �200 years old. Prolonged periods of

livestock grazing in the region meant that understory

vegetation of Acacia spp. and other plants was largely

absent from all areas of woodland in the study area.

More than 80% of the original vegetation cover in the

Nanangroe area has been cleared over the past 150

years, primarily for domestic stock grazing (Bungongo

Centenary Committee 1986). Vegetation in these heavily

cleared areas was paddocks dominated by exotic pasture

grasses and isolated single trees that were the remnants

of past woodland vegetation cover.

In several parts of the region, an emerging pine

plantation now surrounds patches of remnant woodland

that escaped earlier waves of land clearing. Further

details of the study area can be found in Lindenmayer et

al. (2001).

The design of the Nanangroe study

The Nanangroe study is a large-scale (20 000-ha)

longitudinal investigation in which changes over time

within sites (period effects) can be distinguished from

differences among sites in their baseline levels (cohort

effects) prior to the application of treatments.

In 1997, we established a set of foundation sites for

the study and characterized all 70 patches of remnant

native vegetation that occurred on land broadly

designated for subsequent pine plantation establish-

ment. Patches were mapped from aerial photographs

and then were ground-thruthed on foot. In 1998, prior

to the commencement of landscape transformation to a

pine-dominated system, we randomly selected 52 of the

70 woodland remnants from strata defined by vegetation

class and woodland patch area. These woodland

remnants were exempt from clearing during plantation

establishment and are hereafter referred to as the

‘‘woodland treatments.’’ We considered four patch size

classes within these woodland treatments, and our site

TABLE 1. Postulated responses to experimental landscape transformation from grazing to woodland dominated by an exotic
plantation, broad drivers of response, and characteristics of taxa exhibiting particular kinds of responses.

Response Possible driver(s) Possible characteristics of taxa

a) Negative response to landscape transformation

Decline in woodland treatments,
increase in woodland controls

displacement high mobility, inability to use matrix

Decline in woodland treatments,
static in woodland controls

local extinction, altered connectivity limited mobility, inability to use matrix,
sensitive to woodland/pine boundaries

Overall decline across study area reduced foraging area, altered
connectivity

woodland specialists, requirement for large
woodland areas

b) Positive response to landscape transformation

Addition of new species addition of new (pine) environment,
altered connectivity

taxa typical of forest environments, ability
to use matrix

Increase in woodland treatments,
stable in woodland controls

increased foraging area because of
pine stands, altered connectivity,
positive response to woodland/
pine boundaries

high mobility, ability to use matrix, habitat
generalists: ‘‘spillover’’ from pine stands
to adjacent woodland patches

Overall increase across the
study area

increased foraging area, altered
connectivity

high mobility, habitat generalists
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FIG. 1. General location of the Nanangroe study area, New South Wales, Australia. Sites with the prefix ‘‘NAN’’ are woodland
remnants surrounded by maturing stands of radiata pine (Pinus radiata). Sites with the prefix ‘‘PIN’’ are stands of radiata pine
planted between 1998 and 2000. Sites with the prefix ‘‘AGR’’ are grazing paddocks on grazing properties. All other sites are
woodland remnants on grazing properties.
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selection procedures yielded 13 remnants in the 0.5–0.9

ha class, 20 remnants in the 1.0–2.4 ha size class, 17

remnants in the 2.5�4.9 ha class, and two remnants in

the 5.0–10.0 ha class. Few large remnants were available

for selection because of the extent of previous clearing

for livestock grazing. We recognized three broad

woodland vegetation classes within the woodland

treatments: (1) red box and red stringybark (codomi-

nant) with apple box (E. bridgesiana), long-leaf box (E.

goniocalyx), and broad-leaved peppermint (E. dives) (19

sites); (2) yellow box, white box, red stringybark

(codominant), and Blakely’s red gum (23 sites); and (3)

mountain swamp gum (E. camphora) and other kinds of

vegetation (e.g., river oak Allocausarina cunninghami-

ana) (10 sites).

We commenced surveys of vertebrates before stands

of radiata pine were planted and then surveyed different

landscape treatments repeatedly after plantation estab-

lishment. Clearing to plant radiata pine in the areas

surrounding the woodland remnants involved the felling

and burning of isolated paddock trees and other

shrubby vegetation (Fig. 2). Native vegetation clearing

controls applied by the former Department of Land and

Water Conservation meant that nine of the 18 woodland

remnants that were not included in our study remained

uncleared. Most of the nine remnants that were cleared

were 1 ha or smaller and the total area of woodland

removed was 16.9 ha. The total area of woodland

remnants remaining after clearing in the Nanangroe

study area was 157.7 ha. Distances between remaining

woodland remnants ranged from 300 m to 4 km.

Site preparation for pine plantation establishment

involved deep-ripping and mounding of the soil with a

bulldozer. This created exposed mineral soil into which

radiata pine seedlings were planted. The total area of

pine established in the study area was 5500 ha. We

defined two age cohorts of recently planted pine stands.

These were trees established in 1998 (cohort 1) and trees

established in 2000 (cohort 2). Of the 52 woodland

treatments, 11 had 1�2 open boundaries with adjacent

agricultural areas. Radiata pine stands completely

surrounded the remaining 41 woodland remnants. We

distinguished between these two kinds of woodland

remnants in our analyses.

In addition to the 52 woodland treatments, we also

established a set of ‘‘natural control’’ sites. These

included: 10 sites in the newly planted stands of radiata

pine trees (hereafter referred to as ‘‘pine controls’’); 56

woodland remnants on semi-cleared private grazing

properties surrounded by areas of scattered paddock

trees and located adjacent to the new plantation estate

(hereafter referred to as ‘‘woodland controls’’); and 10

permanent sites in grazing paddocks that surrounded

the 56 woodland remnants on grazing properties

(hereafter referred to as ‘‘paddock controls’’).

Domestic livestock grazing continued in all woodland

remnants in the study and the maturing radiata pine

stands, thus preventing potential confounding between

FIG. 2. Landscape changes on the Nanangroe property
between 1997 and 2005 showing landscape context changes
around site NAN28 (photos courtesy of Forests NSW, Tumut
Office).
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treatments and grazing effects. Table 2 summarizes the

treatment design and number of sites in each category.

In summary, six key features characterized the design

of the Nanangroe study. These were as follows: (1)

quantification of animal abundance prior to landscape

treatments being applied, with each site becoming its

own control, making the investigation more powerful

for studying temporal change than cross-sectional

studies; (2) the use of a randomized and replicated

patch selection procedure to reduce the potential for bias

and to average over random factors; (3) the establish-

ment of a set of ‘‘natural external control’’ sites to

quantify natural year-to-year fluctuation in animal

occupancy of sites and to provide additional contrasts

helping to quantify patterns of change; (4) the repeated

measurement of biophysical attributes at the site level to

link changes in them to changes in biota; (5) repeated

field surveys over a prolonged period to better quantify

species response trajectories to landscape transforma-

tion; and (6) the implementation of the study at a large

spatial scale to make it appropriate for mobile groups

such as birds (Wiens 1999), which can be difficult to

investigate with small-scale studies (Debinksi and Holt

2000, Lindenmayer and Fischer 2006).

Vertebrate surveys

Mammal and reptiles.—We established a permanent

200 m long transect at each of the 128 sites in our study.

We counted arboreal marsupials and macropods by

spotlighting along each transect in the spring of 1997,

1999, 2000, 2001, 2004, and 2006. We used a 50-W

handheld spotlight and a single observer walked each

transect at a speed of ;3 km/h. We commenced

spotlighting one hour after dusk to ensure that arboreal

marsupials had emerged from their den or nesting sites

(see Lindenmayer et al. 1991). We halted surveys after

three hours to avoid the risk of observer fatigue leading

to failure to detect animals. No spotlighting surveys

were conducted on windy nights or during rain or fog to

limit the risks of weather conditions leading to animals

being overlooked. We recorded the number of individ-

uals of each species of arboreal marsupial and macropod

seen.

We gathered data on reptiles by searching under

artificial substrates established at 0-, 100-, and 200-m

plot points along each transect. We established three

types of substrates at each point: (1) three overlaid

sheets of corrugated iron, each measuring 13 1 m, (2) a

pile of hardwood timber offcuts composed of four pieces

of timber each measuring 1 m long3 15 cm wide3 3 cm

deep, and (3) a set of four standard (4203 245 mm) roof

tiles. For each year, we aggregated our data to the site

level for statistical analysis of both mammals and

reptiles.

Birds.—We recorded bird data at the 0-, 100-, and

200-m plot points along the 128 transects. We completed

repeated 5-minute point interval counts (sensu Pyke and

Recher 1983) at these three stations in early November

in 1998, 1999, 2000, 2001, 2003, and 2005. Early

November is the peak breeding season in the study

region, when most summer migrants are present and

birds have established territories and exhibit strong

patterns of site fidelity. For each point count, observers

recorded birds within 50 m of the plot point and that

also were within the woodland remnant. Counts were

completed between 05:30 and 09:30 hours and were not

undertaken on days of poor weather (rain, high wind,

fog, or heavy cloud cover).

Ten bird observers from the Canberra Ornithologists

Group participated in the bird surveys. Although

observers were highly experienced, they varied in their

ability to detect some groups of birds. Cunningham et

al. (1999) showed that averaging the counts of two or

more observers at the same site could compensate for

extra variability due to observer heterogeneity. Field et

al. (2002) showed that weather and other conditions on

any given day can influence bird detectability. Thus, in

each survey year, each of the 128 sites was surveyed by

two different observers on different days.

Vegetation measures and other covariates

We established vegetation plots measuring 10 3 10 m

at the 0-, 50-, 100-, 150-, and 200-m points along the

marked transect at each site. We measured site-based

and other broader-scaled covariates at the start of the

study (1998) and again in 2005 (see Appendix A).

TABLE 2. Number of sites cross-classified by various parameters, highlighting the factorial
structure of the design of the Nanangroe study, New South Wales, Australia.

Site type
Surrounding
vegetation Cohort

No.
edges

1998
planting

2005
planting

Woodland pine 1 1�2 3 3
Woodland pine 1 3�4 16 15
Woodland pine 2 1�2 8 5
Woodland pine 2 3�4 25 29
Woodland paddock 56 55
Pine pine 10 10
Paddock paddock 10 10

Note: We present counts of sites for the first (1998) and eighth (2005) years of the study to show
minor losses or additions of sites as plantation establishment proceeded.
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Data structures and statistical methods

Mammal and reptile analyses.—We modeled mammal
and reptile data using generalized linear mixed modeling

(McCulloch and Searle 2001). The response variable for
our analyses was binary: the presence or absence of a

given species of mammal or reptile at a site in a given
year. We modeled the probability p of occupancy by an

animal as a function of year, treatment (i.e., ‘‘woodland
treatments’’ vs. ‘‘woodland controls’’), and year 3

treatment interaction, while taking account of the
repeated-measures structure of the study design via the

inclusion of appropriate random effects. There are
compelling statistical reasons for using the logistic

transformation to transform p from [0, 1] to take values
on the real line. Among other things, this prevents the

model from producing nonsensical probabilities above
1. The logistic function logit( p) ¼ logf p/(1 � p)g
achieves this end and can often be modeled on a linear
scale. The resulting model was a mixed linear logistic
model with fixed effects for treatment, year, and their

interaction and random effects for site and site3 year to
account for possible dependence in our data. We assume

because we have repeat observations at the same site,
that detection rates are high (non-detection is low) and

hereafter we use the term occupancy rate or the
probability of occupancy at a site.

Bird analyses.—We aggregated our data to give the
number of detections of a given species out of the

number of plots by observer combinations. Hence, data
were expressed as a proportion or detection rate (e.g.,

two detections recorded by two observers each surveying
three plots¼2/(233)¼1/3). Previous work has shown a

strong relationship between detection rate and the
number of birds counted (Lindenmayer et al. 2002)

and that over six point counts, non-detection is low for
the vast majority of bird species. As in the case of

mammal and reptile data, we assumed, because we
gathered repeat observations at the same site, that

detection rates for birds are high (and non-detection is
low); hence we refer to occupancy rates or the
probability of occupancy at a site.

We characterized sites by treatment, environmental,
landscape, and other variables as well as temporal effects

by year (or age of the pine). Our primary focus was on
temporal changes in bird occupancy sites defined by the

seven treatment classes listed in Table 2 (i.e., temporal
changes in mean values over all sites within a group).

Hence, our thinking was in terms of a ‘‘typical’’
longitudinal site profile for a given treatment class. That

is, we focused our inference for bird taxa on broad
landscape ‘‘treatment’’ effects by considering sites having

the same treatment classification as a group. As for
mammals and reptiles, we used logistic linear mixed

models to model the probability of occupancy and hence
determine the significance and nature of species response

to landscape change. These results provided a formal basis
for classifying birds according to the statistical significance

and nature of time trajectories to woodland treatments.

Animal life history attributes.—We collated extensive

data on life history and other attributes of each
vertebrate species from the literature. As an example,

for birds, the data we gathered included body mass,
group type (solitary, pairs, or flock), social system

(monogamous, polygamous, and so on), nest type
(hollow, cup, mud bowl, and so on), nest placement
(horizontal fork, ground, and so on), nesting height,

clutch size, broods per year, movement behavior
(resident vs. migrant, latitudinal or altitudinal migrant),

and foraging guild. The data we assembled from the
literature for reptiles and mammals included body mass,

mode of locomotion, nesting behavior (e.g., cavity-using
or log-dependent), social organization, and diet.

We used contingency tables, ANOVA, and canonical
variate analysis to conduct formal statistical analyses of

associations between animal life history attributes (e.g.,
body size, diet, or foraging guild) and responses to

landscape transformation. Further we engaged 12 expert
ornithologists to informally assess associations between

life history attributes and our classification of birds.

RESULTS

Mammals

Because mammals were virtually absent from the 10
pine controls and the 10 paddock controls, we excluded

these sites from subsequent analyses. Hence, the results
we present focus on tracking changes in the woodland

controls and woodland treatments (Table 3). We
particularly emphasize time trajectories in species’

probabilities of occupancy of woodland treatment sites.
We recorded three species of arboreal marsupials. The

common brushtail possum (Trichosurus vulpecula) ex-
hibited a significant (P ¼ 0.03) linear increase in

probability of occupancy over all woodland remnants,
with a suggestion (P ¼ 0.10) of a greater increase in

woodland treatments (Fig. 3a). Similar patterns were
observed for the sugar glider (Petaurus breviceps), but

were not statistically significant (Fig. 3b). There was
weak evidence (P ¼ 0.11) of an overall decline in the

probability of occupancy of the common ringtail
possum (Pseudocheirus peregrinus) in both types of
woodland remnants (Fig. 3c).

We found that the probabilities of occupancy for the
terrestrial marsupial, the eastern gray kangaroo (Macro-

pus giganteus), increased significantly over time in both
the woodland treatments and the woodland controls (P

, 0.001). Although this linear year effect was strongest
for woodland treatments (Fig. 3d), there was no

evidence of a year 3 treatment interaction effect. We
identified a similar pattern for the swamp wallaby

(Wallabia bicolor), but the statistical evidence for the
linear effect was weaker (P ¼ 0.03; Fig. 3e).

We explored for the effects of covariates such as pine
cohort, woodland patch size, and dominant species of

woodland tree. There was no evidence that linear
changes in occupancy probabilities for any species of

arboreal marsupial or macropod were responding to
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measured attributes characterizing the woodland rem-

nants. However, there was evidence (P ¼ 0.02) of a

strong, linear increase in the sugar glider in high-altitude

remnants, but a slight decline in low-altitude remnants.

There were too few mammal taxa (five) for which we

had good data on responses to landscape context and

other effects to undertake formal statistical analyses of

associations between functional groups or life history

attributes and landscape transformation.

Reptiles

Reptiles were virtually absent from the 10 pine

controls (see Table 4) and we excluded them from
subsequent analyses. Thirteen of the 17 recorded species

of reptiles were rare (Table 4), making formal statistical
analyses possible only for four species. We found
evidence of significant temporal linear increases in the

probability of detection for southern rainbow skink
Carlia tetradactyla (P ¼ 0.009; Fig. 4a), marbled gecko

FIG. 3. Linear trends for mammals showing evidence of changed detection rates in woodland treatments and woodland
controls.

TABLE 3. Occupancy rates (percentage of detections) for arboreal marsupials and macropods, by
treatment, in the Nanangroe study.

Species Treatment

Detections (% occupied)

1999 2001 2004 2006

Petauroides volans woodland controls 0 0 0 0
woodland treatments 0 1.9 0 1.8

Petaurus breviceps woodland controls 3.6 1.9 2.2 1.8
woodland treatments 4 1.9 7.1 8.9

Pseudocheirus peregrinus woodland controls 16.1 21.2 13.3 10.9
woodland treatments 18 13 17.9 7.1

Trichosurus vulpecula woodland controls 21.4 23.1 26.7 23.6
woodland treatments 12 27.8 28.6 35.7

Macropus giganteus woodland controls 0 1.9 13.3 12.7
woodland treatments 0 3.7 39.3 28.6

Macropus robustus woodland controls 0 0 2.2 3.6
woodland treatments 0 0 1.8 3.6

Macropus rufogriseus woodland controls 0 0 0 0
woodland treatments 0 1.9 7.1 0

Wallabia bicolor woodland controls 0 0 2.2 0
woodland treatments 0 1.9 5.4 7.1

Notes: Percentages are calculated by dividing the number of sites occupied by the total number
of sites in each treatment group and multiplying by 100. Totals for woodland surrounded by
paddock (woodland controls) and woodland surrounded by pine (woodland treatments) were 56
and 52, respectively.
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Christinus marmoratus (P , 0.001; Fig. 4b), three-toed

skink Hemiergis decresiensis (Fig. 4c; P ¼ 0.008), and

Boulenger’s skink Morethia boulengeri (P ¼ 0.017; data

not shown). For all four species of reptiles, this trend

was consistent across three of the four broad classes of

sites (woodland treatments, woodland controls, pad-

dock controls). That is, there was no evidence of

interaction between year and treatment (Fig. 4a–c).

We found no evidence that linear changes in the

probability of occupancy for any reptiles were respond-

ing to other characteristics of woodland remnants.

Again we had insufficient data on responses of reptiles

(four species) to undertake meaningful analyses of

associations between life history attributes and land-

scape transformation.

Birds

Species richness.—We recorded a total of 119 different

species of birds during seven surveys completed between

1998 and 2005. Latin names for all species detected can

be found in Appendix B. Overall, the total number of

species in the landscape remained approximately con-

stant (averaging 93–95 species). We found strong

TABLE 4. Occupancy rates for reptiles, by treatment, in the
Nanangroe study.

Species and treatment

Detections (% occupied)

2000–
2001

2000–
2002 2001 2003 2006

Acritoscincus platynotum

Paddock controls 0 0 0 0 0
Woodland controls 0 0 0 0 0
Pine controls 0 0 0 0 0
Woodland treatments 0 5.7 0 5.4 3.6

Carlia tetradactyla

Paddock controls 0 20 10 10 22.2
Woodland controls 10 13.8 12.7 43.4 20.8
Pine controls 0 0 0 10 0
Woodland treatments 0 8.6 6.1 12.5 16.1

Christinus marmoratus

Paddock controls 0 0 0 10 22.2
Woodland controls 0 0 25.5 24.5 37.7
Pine controls 0 0 0 0 0
Woodland treatments 5 2.9 14.3 8.9 19.6

Ctenotus robustus

Paddock controls 40 0 10 0 55.6
Woodland controls 0 0 0 7.5 17
Pine controls 0 0 0 0 0
Woodland treatments 0 2.9 0 1.8 1.8

Ctenotus taeniolatus

Paddock controls 0 0 0 0 0
Woodland controls 0 0 3.6 0 0
Pine controls 0 0 0 0 0
Woodland treatments 0 2.9 2 3.6 3.6

Egernia striolata

Paddock controls 0 0 0 10 0
Woodland controls 0 0 0 0 1.9

Egernia striolata

Pine controls 0 0 0 0 0
Woodland treatments 0 0 0 0 1.8

Eulamprus heatwolei

Paddock controls 0 0 0 0 0
Woodland controls 0 0 0 0 0
Pine controls 0 0 0 0 0
Woodland treatments 0 0 2 5.4 3.6

Hemiergis decresiensis

Paddock controls 0 20 30 10 33.3
Woodland controls 5 17.2 20 34 20.8
Pine controls 20 20 30 30 10
Woodland treatments 20 31.4 24.5 39.3 51.8

Lampropholis delicata

Paddock controls 0 0 0 0 0
Woodland controls 5 0 0 0 0
Pine controls 20 0 0 0 0
Woodland treatments 0 5.7 10.2 3.6 1.8

Lampropholis guichenoti

Paddock controls 0 0 0 0 11.1
Woodland controls 0 0 0 0 0
Pine controls 0 0 0 0 0
Woodland treatments 5 2.9 2 7.1 3.6

Leiolopisma duperreyi

Paddock controls 0 0 0 0 0
Woodland controls 0 0 0 0 0
Pine controls 0 20 0 0 0
Woodland treatments 0 2.9 0 7.1 1.8

TABLE 4. Continued.

Species and treatment

Detections (% occupied)

2000–
2001

2000–
2002 2001 2003 2006

Morethia boulengeri

Paddock controls 20 0 10 20 11.1
Woodland controls 0 0 0 17 9.4
Pine controls 20 0 0 0 0
Woodland treatments 5 11.4 4.1 8.9 7.1

Niveoscincus coventryi

Paddock controls 0 0 0 0 0
Woodland controls 0 0 0 0 0
Pine controls 0 0 0 0 0
Woodland treatments 0 0 0 0 1.8

Pogona barbata

Paddock controls 0 0 0 0 0
Woodland controls 0 0 0 1.9 1.9
Pine controls 0 0 0 0 0
Woodland treatments 0 0 0 1.8 0

Pseudechis porphyiacus

Paddock controls 0 0 0 0 0
Woodland controls 0 0 0 0 1.9
Pine controls 0 0 0 0 0
Woodland treatments 0 0 0 0 0

Pseudonaja textilis

Paddock controls 0 0 0 0 0
Woodland controls 0 0 0 1.9 0
Pine controls 0 0 0 0 0
Woodland treatments 0 0 0 0 0

Tiliqua scinicoides scinicoides

Paddock controls 0 0 0 0 0
Woodland controls 0 0 0 0 1.9
Pine controls 0 0 0 0 0
Woodland treatments 0 0 2 0 1.8

Note: Occupancy percentages were calculated as described in
Table 3.
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evidence (P , 0.001) of a temporal increase in species

richness in the 10 pine controls, and a trend showing an

increase in the woodland control sites (Fig. 5). There

was no evidence of differences in the trajectory of species

richness for the other treatments over the eight years of

the study. Because there was no evidence of a difference

between pine cohorts (based on year planted), we

averaged over them for the graphical representation of

the species richness results (Fig. 5).

Individual bird species responses.—We considered 96

species with an occupancy rate of .1% for detailed

analysis. We were principally interested in the longitu-

dinal occupancy rate profiles of species within the

woodland treatments and woodland controls. Hence,

we estimated the linear trend (and associated standard

error) by modeling variation in the response as a linear

function of year. We inferred the response to be

significant if the trend estimate/SE (trend) exceeded 62.

Study-area-wide changes.—Several species of birds

showed significant changes in occupancy rates across the

entire study area. Examples of study-wide decliners were

the Black-faced Cuckoo-shrike and Sulphur-crested

Cockatoo. Examples of increasers included the Yellow-

faced Honeyeater (Fig. 6c) and the Common Bronze-

wing (Fig. 6a).

Changes in pine controls.—We found strong evidence

that occupancy rates increased throughout the eight

years in the pine controls for species such as the Gray

Fantail (Fig. 7a), White-browed Scrub-wren (data not

shown), and Rufous Whistler (Fig. 7b). Others, such as

the Superb Fairy-Wren, initially increased but then

showed evidence of a temporal decline (data not shown).

Changes in woodland treatments vs. woodland con-

trols.—We classified birds according to response groups

based on comparisons of occupancy rates in woodland

treatments and woodland controls (Table 5).

Overall, our data indicate that more species in our

study respond positively than negatively. However, four

notable species (Black-faced Cuckoo-shrike, Dusky

Woodswallow, Common Starling, and Sulphur-crested

Cockatoo) showed negative changes in detection rates

both in the woodland treatments and the woodland

controls. They also declined across the entire landscape

(see also Fig. 6). Two others, the Brown Treecreeper

(Fig. 8) and the Red-rumped Parrot (data not shown),

showed evidence of more complex effects in that they

exhibited a negative response to woodland treatments,

but a positive one to woodland controls.

Five bird species, including the Gray Shrike-thrush

(Fig. 8a) and Weebill (data not shown), responded

FIG. 4. Linear trends for a selection of reptiles in four treatments: paddock controls, woodland controls, pine controls, and
woodland treatments with 1�2 open boundaries with agricultural areas and 1�2 edges with pines.
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positively both to the woodland treatments and wood-

land controls (Table 5). They also increased across the

whole study area, as did many of the other species that

responded positively to woodland treatments. We

identified no birds that exhibited a positive response to

the woodland treatments but a negative one to the

woodland controls (Table 5).

The largest groups of birds that we identified were

those showing neutral responses to at least one of the two

major experimental treatments. These were: (1) those

that increased in the woodland controls but showed no

evidence of change in the woodland treatments; (2) those

that increased in the woodland treatments but showed no

evidence of change in the woodland controls; and (3)

those that showed no evidence of change in either kind of

woodland remnant (Table 5). Many of the birds in these

neutral response categories showed increases in occu-

pancy rates across the landscape, and only one (the

Galah) exhibited a decrease. We highlight examples of

the varying longitudinal profiles in Fig. 8.

Factors contributing to changes in longitudinal land-

scape context effects for birds in woodland treatments.—

We examined factors relating to changes in longitudinal

profiles for individual bird species within woodland

treatments.

1. Pine boundary effects.—Fig. 9 shows contrasting

pine boundary effects for individual bird species within

woodland treatments. The Gray Shrike-thrush (Fig. 9b)

increased significantly over time within woodland

treatments having 3�4 boundaries with radiata pine

forest. The Magpie Lark (Fig. 9a) and Eastern Rosella

(data not shown) showed the reverse trend and

probabilities of occupancy were greater in woodland

treatments with 1–2 boundaries with agricultural areas

than in remnants where 3–4 of the patch boundaries

were with the radiata pine forest.

2. Pine cohort effects.—The probabilities of occupan-

cy for several species within the woodland treatments

varied in response to the cohort (year planted) of the

surrounding radiata pine stands (Fig. 10). As an

example, probability of occupancy by the Rufous

Songlark (Fig. 10a) showed a clear decline in woodland

treatments where pine was planted in 1998 (cohort 1),

but there was no evidence of change in woodland

treatments surrounded by pine planted two years later

(cohort 2). In the case of the Yellow-rumped Thornbill

(Fig. 10d), the probability of occupancy declined over

time for both age cohorts, but was more prominent in

cohort 1. The White-naped Honeyeater (data not

shown) and White-throated Treecreeper (Fig. 10b)

displayed upward overall increases in the probability

of occupancy for both age cohorts, but the trend was

more pronounced in cohort 1. There was evidence of

convergence in the trend curves for the two pine cohorts

of woodland treatments for the Brown Thornbill (Fig.

10c).

3. Woodland remnant area effects.—A number of bird

species showed changing occupancy rates in relation to

the area of woodland remnants surrounded by radiata

pine stands. As an example, occupancy rates for the

Spotted Pardalote (Fig. 11a) and Weebill (Fig. 11b)

increased faster in the larger remnants than in the

medium and small ones. The decline of the White-

plumed Honeyeater (Fig. 11c) was fastest in the large

woodland treatment sites, whereas the decline of the

Yellow-rumped Thornbill (Fig. 11d) was fastest in the

small remnants but slowest in the medium-sized

woodland treatment sites (Fig. 11). In contrast, the

Dusky Woodswallow (data not shown) declined most

rapidly in the medium-sized patches.

4. Woodland vegetation type effects.—We identified

significant vegetation effects for several species of birds

in woodland treatments. For example, the probability of

occupancy by the White-throated Treecreeper increased

significantly (P¼ 0.004) over the eight years of the study

in the vegetation class comprising red box, red

stringybark, broad-leafed peppermint, and apple box,

but remained unchanged in mountain swamp gum and

yellow box/white box (Fig. 12d). In contrast, the Superb

Fairy-Wren declined significantly in mountain swamp

gum but occupancy rates increased significantly in the

other two vegetation classes (P , 0.001) (Fig. 12c).

Other examples of significant vegetation type effects

include those for the Noisy Friarbird (Fig. 12a), Brown

Thornbill (data not shown), and Red Wattlebird (Fig.

12b).

FIG. 5. Smoothed (second-order polynomial) temporal
profiles (shown by lines) in the number of species detected in
four treatments. Birds detected on fewer than four occasions
have been excluded.
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5. Temporal changes in habitat covariates and effects

on longitudinal profiles.—A clear advantage of our

longitudinal study was that it was possible to directly

estimate the association between changing habitat

covariates within woodland remnants. We examined

habitat covariates measured both in 1998 and 2005 (see

Appendix A) and identified covariates significantly (P ,

0.05) associated with changes in bird occupancy rates

(Fig. 13). Significant covariates for several species

included ground cover, shrub cover, and litter layer.

As an example, Fig. 13 shows a significant within-site

association (pooled over sites) between the occupancy

rate of the Brown Treecreeper and percent ground cover

over the period 1998–2005.

Overview.—Based on our results, we were able to

identify five distinct patterns of change. First was an

added environment response pattern across the entire

study area. We believe this is plausible for those species

that increased (e.g., Yellow-faced Honeyeater, eastern

gray kangaroo, common brushtail possum) or decreased

(e.g., Black-faced Cuckoo-shrike, common ringtail

possum) across the entire study area. Second, we

observed a landscape-scale displacement response pat-

tern in which a species decreased within woodland

remnants surrounded by radiata pine stands but, at the

same time, increased in woodland remnants in grazing

lands adjacent to the Nanangroe property (where no

landscape transformation had taken place) (e.g., Red-

rumped Parrot). Third, we found an added-environment

response pattern in the pine stands in which animals

were recruited into recently established areas of pine

(e.g., European Blackbird). Fourth, our data suggested a

spillover response pattern in which animals were

recruited to newly established stands of radiata pine

and then apparently ‘‘spilled over’’ into the woodland

remnants surrounded by pine (e.g., Gray Fantail).

Finally, we found a landscape-context response pattern

in which the probabilities of occupancy showed a

temporal increase or decrease in woodland treatment

sites. Covariates that helped to explain these effects

included: (1) patch boundary number (e.g., Eastern

Rosella); (2) age of surrounding pine (e.g., White-

throated Treecreeper); (3) woodland patch size (e.g.,

Spotted Pardalote); (4) woodland vegetation type (e.g.,

Noisy Friarbird); and (5) habitat attributes within

woodland patches (e.g., Brown Treecreeper).

These response patterns and covariate effects can be

crudely classified in terms of their spatial scale. At the

largest scale, there were overall study-wide changes in

animal occupancy rates that were positive for some taxa

FIG. 6. Linear trends and predicted detection rates for a selection of individual bird species that showed temporal changes
across the entire study area under the two major treatments in the study: woodland controls and woodland treatments.
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and negative for others. At a patch scale, an array of

species was influenced by changes in the landscape

context of woodland remnants when the surrounding

landscape was transformed to pine stands. At the smallest

spatial scale, localized changes in habitat attributes

within woodland patches surrounded by maturing pines

had a significant influence on some species.

Links with life history and other attributes.—Contin-

gency tables, ANOVA, and canonical variate analysis of

associations between bird life history attributes (e.g.,

body size, diet, or foraging guild) and our classification

of birds (see Table 5) showed no evidence of statistically

significant associations or even near-significant associa-

tions. Further, our panel of experts could not identify

any clear patterns in our data. We note that failure to

find significant associations does not mean that they do

not exist; such associations may be present but are

obscured by variability in our data.

DISCUSSION

Large-scale landscape transformation is a global

phenomenon (Foley et al. 2005, Millennium Ecosystem

Assessment 2005) with significant impacts on biodiver-

sity and ecosystem processes (UNEP 1999, Sala et al.

2000). Plantation development is a major form of

landscape transformation in all parts of the world

(Estades and Temple 1999, Lindenmayer and Hobbs

2004, Jackson et al. 2005). We have implemented a

large-scale longitudinal natural experiment to generate

high-quality data to better elucidate the mechanisms

underpinning temporal changes in biota that accompany

plantation development. A better understanding of the

possible mechanisms for change increases opportunities

for moving away from species- or landscape-specific

outcomes to facilitate a more general translation of

findings to other species and landscapes (Fahrig 2003).

We discuss the response patterns we observed,

beginning with an outline of study-area-wide changes,

then changes within radiata pine stands, and finally

landscape-context effects. Because mammals and rep-

tiles exhibited few significant treatment or woodland

patch covariate effects (Figs. 3 and 4), much of our

discussion relates to findings for birds and it is largely

based on our cross-classification of individual species’

responses (see Table 5). Our study produced a number

of novel effects not anticipated at the commencement of

our work, and an outline of these effects precedes the

final part of the paper, where we summarize some of the

key implications of our research for landscape manage-

ment. These general implications also may apply to

other landscapes and regions around the world where

plantations are being established on agricultural land

(e.g., Peterken and Ratcliffe 1995, Dyck 2000).

Study-area-wide changes

Although the transformation treatment was applied at

the landscape level in this study, we observed changes

across the entire study area for many species. That is,

landscape context was altered for 52 woodland remnants

surrounded by pine stands (the woodland treatments),
but changes in detection rates also were recorded across

the entire study area, including the 56 woodland

remnants where no change in landscape context had

occurred (the woodland controls). Such changes in

species assemblages highlight the magnitude of change

that the global trend in plantation expansion (Franklin

2003) may trigger. We suggest that different processes

are likely to be driving the responses of different species.

Prior to the commencement of our investigation, we

postulated that the birds that were likely to increase

across the study area would be wide-ranging forest

generalists that use pine stands. In contrast, woodland

species that need large foraging areas would be likely to

decline (Table 1). The creation of a new environment of

densely spaced radiata pine trees in the Nanangroe study

does appear to have made the entire study area more

suitable for some typical forest bird species (e.g.,

FIG. 7. Linear trends and predicted detection rates of the
Gray Fantail and the Rufous Whistler in radiata pine stands
per se. Symbols represent the data for a given year, and the line
is fitted.
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Common Bronzewing and Spotted Pardalote; Figs. 6a

and 8b). This is consistent with the outcomes of other

studies that suggest that altering regional populations

will provide a source of colonists to invade patches from

surrounding areas (Askins et al. 1987, Gascon et al.

1999, Bender and Fahrig 2005). It is also congruent with

the findings of our earlier cross-sectional study in the

neighboring Tumut region in which typical forest species

such as the Yellow-faced Honeyeater and White-

throated Treecreeper were common both in stands of

radiata pine and in the eucalypt forests remnants

adjacent to plantation trees (Lindenmayer et al. 2002).

We found evidence of an overall study-area-wide decline

for several species. These were predominately open-

country and native-woodland taxa such as the Black-

faced Cuckoo-shrike (Table 5). In earlier studies in the

nearby Tumut region, we found that this species was

uncommon in many eucalypt forest remnants surround-

ed by 10–70 year old radiata pine (Lindenmayer et al.

2002).

In Table 1 we postulated the existence of a ‘‘displace-

ment’’ mechanism (e.g., Darveau et al. 1995) at

Nanangroe in which birds may vacate an area made

increasingly unsuitable by changes in the matrix, but

colonize suitable ones nearby where landscape transfor-

mation is not occurring. We found strong evidence for

two species that declined in the woodland treatments but

increased in the woodland controls (Fig. 8). We forecast

that these species would be mobile species and strongly

woodland-associated (and hence sensitive to matrix

conversion to densely spaced stands of radiata pine

trees). This appears to be true for one of the species (the

Red-rumped Parrot), but only partly true for the other,

the Brown Treecreeper, which is found predominately in

woodland and rangeland areas but is known to be

dispersal-limited (Walters et al. 1999, Cooper et al.

2002). We did not record the reverse ‘‘displacement’’

pattern, in which species that declined in the woodland

controls increased in the woodland treatments. Thus, the

factors that made the woodland controls unsuitable

appeared to result in birds declining across the entire

study area (e.g., Black-faced Cuckoo-shrike) rather than

such effects being offset by an increase in woodland

treatments. Three of the four species that declined in

TABLE 5. Birds cross-classified according to the nature of the significance of linear changes in detection rates in woodland
treatments and woodland controls.

Birds grouped by response to woodland treatments

Positive Neutral Negative

a) Species with positive response to woodland controls

Positive for treatments surrounded by
pines and controls with no change
in landscape context; overall
landscape ‘‘increasers’’

Static in treatments, increasing in controls
(with many increasing in the landscape)

Declining in treatments, increasing in
controls

Gray Shrike-thrush, Spotted Pardalote,
Weebill, White-throated Treecreeper,
Yellow-faced Honeyeater

Australian Magpie, Little Friarbird, Magpie
Lark, Peaceful Dove, Red Wattlebird,
Striated Pardalote, Noisy Friarbird,
Australian Raven, Buff-rumped Thornbill,
Fan-tailed Cuckoo, [Richard’s Pipit],
[Little Lorikeet]

Brown Treecreeper, Red-rumped
Parrot

b) Species with neutral response to woodland controls

Increasing in treatments, static in
controls (with many increasing in
the landscape)

No change for both key groups of woodland
sites

Declining in treatments, static in
controls

Common Bronzewing, Gang-gang
Cockatoo, Laughing Kookaburra,
Silvereye, Superb Fairy-wren,
Blackbird, Noisy Miner, Rufous
Whistler, Shining Bronze-cuckoo,
Golden Whistler, White-winged
Chough, Crescent Honeyeater, Gray
Fantail

Crimson Rosella, Striated Thornbill, White-
winged Triller, Brown-headed Honeyeater,
Brown Thornbill, Crested Shrike-tit,
Eastern Rosella, European Goldfinch,
Horsfields Bronze-Cuckoo, Nankeen
Kestrel, Olive-backed Oriole, Pacific Black
Duck, Pied Currawong, Stubble Quail,
Tree Martin, Welcome Swallow, Western
Gerygone, White-browed Scrubwren

[Galah], Gray Butcherbird, Rufous
Songlark, White-plumed
Honeyeater, Willie Wagtail,
Yellow-rumped Thornbill

c) Species with negative response to woodland controls

Declining in controls, increasing in
treatments

No change in treatments, decreasing in
controls

Negative for both key groups of sites;
overall landscape ‘‘decliners’’

No species Restless Flycatcher [Black-faced Cuckoo-shrike],
[Common Starling], [Dusky
Woodswallow], [Sacred Kingfisher],
[Sulphur-Crested Cockatoo]

Notes: Species in boldface show a significant (P , 0.05) increase in the region overall. For birds shown in italics in a given type of
woodland remnant, there were insufficient data (,1% detections) to estimate the linear trends for the other type of remnants. Birds
in brackets (e.g., the Galah) show a significant (P , 0.05) decline in the overall region. For birds in lightface, the trend was not
significant. Responses are presented for all bird species with detection rates exceeding 1%.
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woodland controls are typical open-country birds that

range over large areas (Table 5). As previously

discussed, stands of radiata pine may be unsuitable

habitat for them and also may impair their movement.

We identified a number of species that declined in the

woodland treatments but remained unchanged in the

woodland controls (e.g., Rufous Songlark and White-

plumed Honeyeater; Table 5). A possible explanation

for this effect might be the removal of nine woodland

patches during the establishment of the pine plantations.

However, the total area of woodland vegetation that was

removed as part of the implementation of our experi-

ment was limited to 16.9 ha or 9.7% of the woodland

area. The majority of taxa in our study have territories

1–3 ha in size and processes other than the removal of

patches are likely to be more important for them. We

discuss these processes in the section on landscape

context effects on woodland treatments.

Our postulate that wide-ranging, mobile, and habitat-

generalist species would be among those likely to exhibit

increases across the entire study area (Table 1) appeared

to hold for two species of macropod (Fig. 3d, e) and the

common brushtail possum (Fig. 3a). Animals from

populations increasing in woodland treatments (where

increases were greatest) may have dispersed into

neighboring areas where no plantation expansion has

occurred. However, an exception to this pattern

occurred among the mammals that we surveyed. The

common ringtail possum declined both in woodland

patches surrounded by pine stands (the woodland

treatments) and in the matched set of woodland controls

(Fig. 3c). This species is not a woodland specialist, but is

widespread and occurs in many kinds of environments

FIG. 8. Linear trends for birds showing evidence of changed detection rates in woodland treatments and/or woodland controls.
(a, b) Increase in woodland treatments and in woodland controls. (c, d) Increase in woodland treatments but not in woodland
controls. (e, f ) Decrease in woodland treatments but not in woodland controls. (g) Decrease in woodland treatments and increase in
woodland controls.
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in eastern Australia (Kavanagh 2004), including stands

of radiata pine (which composed the matrix in this

study). The species was common at the start of the

Nanangroe study (Lindenmayer et al. 2001). We have

anecdotal evidence of an increasing number of large

forest owls in the region over the past few years. We

speculate that the establishment of pine stands may have

attracted these wide-ranging avian predators of the

common ringtail possum. This may explain the decline

in occupancy rates for the species across the entire study

area. Although plausible, climatic conditions appear

unlikely to be a driver of change for mammals in our

investigation. This is because our nine-year study has

spanned both dry and wet periods.

At the start of this investigation, we anticipated that

most species of reptiles would decline across large parts

of the study area because of changes in the temperature

and ground cover conditions associated with plantation

establishment (Gepp 1979), particularly in young pine

stands (Fischer et al. 2005). However, we identified

increases in occupancy rates in both the woodland

treatments and the woodland controls. A possible

explanation for this is that the artificial substrates we

established became increasingly suitable for reptiles over

time. Hence, the patterns for reptiles may have been an

artifact of our survey methodology. However, the

paucity of reptiles under the artificial substrates that

we established in our 10 pine controls suggests the

effects of other important factors. The lack of poten-

tially suitable environments for reptiles such as logs that

were removed during plantation establishment may

explain their absence from the 10 pine control sites.

Changes in the pine controls

The establishment of pine stands in the Nanangroe

study added a new environment composed of relatively

densely spaced trees that previously did not occur in the

landscape. At the commencement of this study, we

forecast that this would trigger the recruitment of

additional species (Table 1), particularly for typical

forest-associated taxa. We observed such trends for

birds and we documented a highly significant (P ,

0.001) temporal increase in species richness within pine

stands (Fig. 5).

The extent of canopy closure, light penetration, size

and interconnectivity of lateral branches, and amount of

bark development are among the range of features

known to change as pine stands mature (Gepp 1979).

These, in turn, alter the suitability of foraging and/or

nesting resources for many bird species; favoring some

taxa such as those strongly associated with dense forests

(e.g., the European Blackbird; see also Suckling et al.

1976, reviewed by Lindenmayer and Hobbs 2004).

Several of the new species that colonized the pine stands

were of conservation significance, including known

declining woodland birds such as the Eastern Yellow

Robin and the Rufous Whistler (see Barrett et al. 2003).

However, other woodland species that are currently

experiencing regional declines, such as the Brown

Treecreeper, disappeared from areas where pine stands

were established.

The patterns that we quantified for birds in the pine

controls were not replicated for arboreal marsupials and

reptiles. We were unable to conduct formal statistical

analyses for either group because of the paucity of

animals in the 10 pine control sites.

It will be important to continue to track changes in the

vertebrate fauna occupying the 10 sites in pine stands as

trees mature and a range of structural and other

FIG. 9. Linear profiles for detection rates of selected
individual bird species for woodland treatments with 1�2 patch
boundaries with radiata pine forest and woodland treatments
where 3�4 patch boundaries are radiata pine forest.
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characteristics of these stands change. Ongoing matura-

tion of these stands may increase their value as habitat for

some species (Gepp 1979, Lindenmayer and Hobbs 2004,

Tubelis et al. 2004, Fischer et al. 2005) and increase the

time available for additional colonization of these areas.

Woodland patch-level (context) effects

Several studies have demonstrated that changes in the

matrix can have a marked influence on the abundance

and persistence of biota in patches of remnant native

vegetation (Laurance 1991, Renjifo 2001, Lindenmayer

and Franklin 2002). A range of positive and negative

biotic responses can manifest (Table 1); in this

investigation we found marked differences in longitudi-

nal profiles between vertebrate groups and among

species within groups. Table 5 shows nine broad kinds

of response of birds to combinations of the two

woodland treatments in our study. Densely spaced trees

characteristic of pine plantations may favor the coloni-

zation of woodland remnants by forest birds, but may

disadvantage species typical of more open woodland

environments. This is consistent with the fact that many

of the species increasing in the pine stands (e.g., see Figs.

6 and 7) and the woodland remnants they surrounded

(e.g., Spotted Pardalote; Fig. 8) also were common in

long-established native forest remnant/pine plantation

mosaic in the nearby Tumut area (Lindenmayer et al.

2002). As we will briefly outline, five attributes of

woodland patches surrounded by pine helped to explain

the landscape context effects.

1. Pine cohort effects.—Time since landscape change

is known to be an important factor influencing the

occurrence of biota in patches (Tilman et al. 1994,

Berglund and Jonsson 2005). We demonstrated that

changes in the structure and composition of pine stands

took some time to influence the occupancy of the

woodland patches that they surrounded. Negative

cohort effects, which were more apparent for the earlier

plantings, were observed for taxa more typical of open

agricultural country or woodland areas.

FIG. 10. Linear trends for the detection rates of selected individual bird species for woodland remnants where the surrounding
stands of radiata pine were planted in 1998 (cohort 1) and woodland remnants where the surrounding stands of radiata pine were
planted in 1999/2000.
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We found positive cohort effects for primarily forest

birds such as the White-throated Treecreeper, which has

been shown to forage further from eucalypt patches, and

into surrounding pine stands as pine trees mature

(Tubelis et al. 2004). In addition, birds attracted to pine

stands may then ‘‘spill over’’ into the adjacent woodland

patches they surround. Such findings were consistent

with our postulate (see Table 1) that matrix-using

species will have limited negative sensitivity to landscape

transformation (see also Blake 1983, Laurance 1991,

Ricketts 2001) and that species that can use the matrix

will often be those also found in remnant patches of

native vegetation (Tocher et al. 1997, Ås 1999).

The woodland treatment and pine plantation system

at Nanangroe is dynamic and we anticipate further

temporal changes in vertebrate assemblages as we

continue to monitor the study area over the coming

decades. The plantation will be clear-felled once pine

trees reach ;30 years of age and it will be important to

determine if, for example, such management practices

facilitate recolonization by open-country species of

woodland treatment sites surrounded by harvested

forest.

2. Boundary effects.—Changes in landscape context

previously have been shown to influence edge effects

and, in turn, occupancy of patches of remnant native

vegetation (e.g., Bayne and Hobson 1997, 1998, Harper

et al. 2005). We found that some bird species responded

significantly to the number of boundaries with the

surrounding plantation (see also Fletcher 2005). Open-

country birds were more likely to be recorded in

remnants with 1�2 open boundaries with agricultural

land than in remnants fully enclosed by pine. One

possible explanation for this is that densely spaced

plantation trees may create barriers to movement,

thereby limiting their use of completely surrounded

woodland patches.

3. Woodland patch size effects.—An enormous and

rapidly expanding literature has documented many

kinds of biotic relationships with patch size (Hanski

1994, Rosenzweig 1995, reviewed by Lindenmayer and

Fischer 2006). We found that landscape context effects

varied among patches of remnant woodland of different

sizes. For some bird species, rates of decline in

occupancy rates were slower in the larger woodland

remnants. Large patches will have larger interior areas

and should support higher populations of animals

typical of agricultural and woodland areas. In contrast,

smaller patches may rapidly lose birds typical of

woodlands after the conversion of the surrounding areas

FIG. 11. Linear trends in the detection rates of selected individual bird species for woodland remnants of different sizes
surrounded by stands of radiata pine. Data are shown for the Spotted Pardalote, Weebill, White-plumed Honeyeater, and Yellow-
rumped Thornbill in large (.3.5 ha), medium (2�3.5 ha), and small (,2 ha) woodland remnants.
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to pine plantations. The Yellow-rumped Thornbill

exhibited this response.

Not all of the patch size effects that we quantified

have straightforward explanations. Birds typical of

forests may benefit from altered landscape-context

effects and might be expected to increase faster in

smaller remnants because of the higher edge to area

ratio. However, the opposite was observed for some

forest species such as the Spotted Pardalote (Fig. 11b).

Similarly, the Dusky Woodswallow (data not shown)

declined most rapidly in the medium-sized patches.

These unexpected findings suggest that other unidenti-

fied processes are driving the responses of some species.

4. Vegetation type effects within woodland patches.—

Vegetation composition within patches may significantly

affect patch occupancy (Zanette et al. 2000, Linden-

mayer et al. 2003). We found that landscape-context

effects for some bird species were influenced by the

dominant vegetation type that characterized woodland

patches surrounded by maturing pine stands. Two

examples were the White-throated Treecreeper and the

Noisy Friarbird. Populations of invertebrate prey vary

markedly between vegetation types (e.g., Majer et al.

1994) and this may have contributed to the effects that

we quantified for a range of primarily or partially

insectivorous bird species. For example, the White-

throated Treecreeper is primarily a forest bird and

exhibited the greatest temporal increases in woodland

patches that were dominated by red stringybark and red

box eucalypts. The White-throated Treecreeper prefer-

entially forages on these kinds of trees (Noske 1982,

Lindenmayer et al. 2007) and this may explain why

occupancy rates increased most rapidly in those

woodland treatments where stringybark eucalypts was

dominant (Fig. 12).

5. Changes in within-woodland patch habitat covari-

ates.—Landscape context may combine with variations

in habitat quality to influence patch occupancy (e.g.,

Yamaura et al. 2006). We found that temporal changes

in covariates within woodland patches surrounded by

pines (such as percentage of ground cover) were

significantly associated with temporal changes in occu-

pancy rates of some bird species (e.g., the Brown

Treecreeper; Fig. 13).

Unanticipated findings

We identified several important and unanticipated

effects. At the beginning of this study, we developed

postulates about the attributes of species that might

characterize broad groups of species that respond in

different ways to landscape transformation (see Table

1). We found that species associated with open country

and woodland environments were often those disadvan-

taged by landscape transformation whereas those that

FIG. 12. Linear trends in the detection rates of selected individual bird species for woodland remnants in different vegetation
types (red stringybark, mountain swamp gum, yellow box/white box) that were surrounded by stands of radiata pine.
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benefited included forest taxa and/or those with

generalist habitat requirements capable of inhabiting

recently established pine stands (the matrix; Fig. 5) and

adjacent woodland patches. However, beyond these

broad generalizations, an unanticipated finding of our

investigation was that we did not find any significant (or

even near-significant) relationships between life history

attributes and landscape transformation. This contrasts

markedly with other studies from around the world in

which relationships have been found between landscape

alteration and life history attributes such as foraging

guild, body size, diet, social organization, and breeding

system (e.g., Terborgh 1974, Koh et al. 2004, Cardillo et

al. 2005; reviewed by McKinney 1997, Lindenmayer and

Fischer 2006). Although our results for mammals and

reptiles may be associated with the small number of

species for which we had sufficient data, this was not the

case for the species-rich assemblage of birds; there were

63 bird species with sufficient data suitable for analysis.

An interesting outcome was that the paucity of life

history relationships contrasts with the results of our

large-scale cross-sectional study of vertebrates in euca-

lypt forest patches surrounded by pines in the neigh-

boring Tumut region. In that case, attributes of birds

such as body size, foraging guild, migratory behavior,

clutch size, and nesting height were significantly

associated with contrasts in site occupancy between

eucalypt patches and the pine matrix and between

eucalypt patches of different shape (Lindenmayer et al.

2002). The reasons for the paucity of functional group

effects at Nanangroe remains unclear, but it may be

associated with the marked differences in responses to

the treatments exhibited by different taxa, even closely

related ones with similar life history attributes.

A second unexpected finding, which is loosely related

to the first one, corresponds to predictability between

landscapes, not for groups of species with common life

history attributes, but for individual species. We found

that key results for particular vertebrate species from a

large study of remnant forest patches surrounded by

pine stands in a nearby area at Tumut (Lindenmayer et

al. 1999, 2002) could not be readily transferred to the

Nanangroe ecosystem. For example, the common

ringtail possum was abundant at Tumut, and at the

start of this project we anticipated that the species would

increase in the woodland remnants as areas of sur-

rounding pine matured. However, the reverse trend

occurred and the species declined across the entire study

area (Fig. 3). Similarly, the Sulphur-crested Cockatoo

and Sacred Kingfisher were common birds in the

remnant forest patch system at Tumut (Lindenmayer

et al. 1996, 2002), but exhibited study-area-wide declines

at Nanangroe (Table 5).

A third unexpected finding was that after nine years of

our study, we found some highly unusual combinations

of native birds in the woodland treatments. For

example, the bird species that increased in these

woodland patches included a unique blend of primarily

forest birds (e.g., White-eared Honeyeater) and primar-

ily open-woodland birds (e.g., Peaceful Dove, Weebill,

and Rufous Songlark). This blend of species was new at

Nanangroe and was not found in the tall forest

ecosystems in the nearby Tumut area (Cunningham et

al. 1999, Lindenmayer et al. 2002) or in an extensive

study of woodland birds in the neighboring South West

Slopes region (Cunningham et al. 2008). In cases where

species ‘‘occur in combinations and relative abundances

that have not occurred previously in a given biome,’’

Hobbs et al. (2006) considered that a novel ecosystem

had developed. Hence, some years after landscape

transformation at Nanangroe, the bird assemblages

appear to be consistent with the development of a novel

ecosystem.

Fourth, although losses and gains of species from

small and large patches are well documented (Hanski

1994, Forman 1995, Rosenzweig 1995, Lindenmayer

and Fischer 2006), we found effects for medium-sized

patches that have seldom been observed previously. An

example was the Dusky Woodswallow, which declined

most rapidly in the medium-sized woodland treatment

sites. Other workers have suggested that medium-sized

patches of native vegetation can be important (Turner

1996) but the mechanisms underpinning their impor-

tance for particular species of birds in this study remain

unclear.

Our findings from the Nanangroe study highlight the

potential difficulties in using the results from a given

landscape to make forecasts about the effects of

landscape transformation on the biota in another

landscape, even one relatively nearby and for compar-

FIG. 13. Predictions from statistical models for the Brown
Treecreeper showing an association between bird detection
rates in 1998 and 2005 and the ground cover.
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atively well-known groups such as birds and mammals.

This emphasizes the fact that the impacts of landscape

transformation on biodiversity may not always be

readily predictable. This is important because landscape

transformation resulting from broad-acre plantation

expansion is a widespread phenomenon worldwide and

may well yield ‘‘surprises’’ in other jurisdictions (e.g., see

Estades and Temple 1999, Wethered and Lawes 2003).

Despite the fact that the responses of some elements of

the biota were unanticipated, the approach that we have

taken nevertheless allowed us to identify some general

response patterns displayed by various taxa.

Implications for landscape management

Our study has produced a range of important insights

that have broad implications, particularly for other

regions in the world that are undergoing landscape

transformation through land use change such as

plantation expansion. The impacts of plantation estab-

lishment on natural resources such as water quality and

quantity are now well documented (Jackson et al. 2005).

Based on our empirical study, together with previous

reviews (e.g., Peterken and Radcliffe 1995, Lindenmayer

and Hobbs 2004), it is clear that the responses of

biodiversity are more complex. They vary markedly

among species, among groups of species, and are

dependent on both the spatial and temporal scale

considered. Our results also emphasize the critical

importance of well-informed plantation design when

the conservation of biodiversity is also a consideration,

which we discuss further in the remainder of this paper.

A key consideration for plantation design that was

highlighted by our study was the importance of patches

of remnant native vegetation embedded within the

plantation. We found that a range of bird, mammal,

and reptile species used these remnants. The value of

native vegetation for biota within plantations is a result

consistent across studies from around the world (e.g.,

Peterken and Ratcliffe 1995, Zanuncio et al. 1998,

Estades and Temple 1999, Lindenmayer and Hobbs

2004). Thus, the biodiversity found in plantations that

contain areas of remnant native vegetation will be

different from a plantation monoculture. This empha-

sizes the critical importance of creating heterogeneous

landscape mosaics (sensu Bennett et al. 2006) as part of

integrating conservation into plantation design.

A second finding from our investigation was that even

relatively small areas of remnant native vegetation

supported a wide range of species. For example, all

but two of our woodland patches surrounded maturing

pine stands were 5 ha or smaller but supported ;15–17

bird species per site throughout the nine years of our

study (Fig. 5). The case for conserving large patches is

well established from conservation theory (Rosenzweig

1995). However, our data suggest that protocols for

establishing plantations on semi-cleared land should

ensure that even small patches of remnant native

vegetation should be retained and not always be targets

for clearing simply because they are small. This

recommendation is consistent with studies in other parts

of the world that have highlighted the conservation

significance of small patches of remnant native vegeta-

tion (e.g., Semlitsch and Bodie 1998, McCoy and

Mushinsky 1999).

A third key consideration for plantation design is that

landscape context matters (Ricketts 2001, Lindenmayer

and Franklin 2002). The transformation of the land-

scape surrounding patches of remnant native vegetation

will significantly alter species presence and abundance in

those patches. Thus, even if patches of remnant native

vegetation are retained, some representatives of initial

faunal assemblages may be lost and some new species

may be gained. In general, it appears that species typical

of forest environments are likely to be favored, but those

more characteristic of open environments such as

woodlands will be disadvantaged. Such changes need

to be considered in terms of the taxa likely to be of

conservation concern in a given landscape or region. In

the Nanangroe natural experiment, some woodland

species, including several of conservation concern (such

as the Brown Treecreeper) declined and appeared to be

replaced by other more widespread species, a change

that has been termed ‘‘biotic homogenization’’ (Olden

and Rooney 2006). However, not all species of

conservation concern declined as a result of plantation

establishment. An example of an increasing species was

the Rufous Whistler, a species thought to be declining

elsewhere, particularly in woodland environments in

southeastern Australia (Barrett et al. 2003). It is notable

that studies elsewhere in the world have found that

plantations and the areas of native vegetation they

contain can be important for a range of threatened

species (e.g., Polmares et al. 2000, Grez et al. 2006).

A fourth consideration for plantation design is that

landscape transformation can influence biodiversity

responses at several spatial scales. For example, we

observed species increases and declines across the entire

study area as well as species displacements between

woodland treatments and woodland controls. This

means that for some species, such as those that are

displaced, negative plantation establishment effects may

be offset by increases elsewhere. For others where there

was no displacement effect or for which large-scale

declines occur, regional conservation issues may arise.

The appropriateness of plantation establishment might

be questioned in these cases, or additional conservation

efforts may be required to secure populations in other

locations.

Land use changes such as plantation establishment

are becoming increasingly widespread, particularly as

carbon offsets to combat greenhouse gas emissions

(Jackson and Schlesinger 2004). The effects of these

rapid landscape transformations can be substantial,

multi-scaled, dynamic, and sometimes unexpected. This

highlights the importance of establishing longitudinal

experiments to better quantify their impacts.
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Gonçalves, and R. P. D. Walsh. 1996. Limiting the soil
degradational impacts of wildfire in pine and eucalyptus
forests in Portugal: A comparison of alternative post-fire
management practices. Applied Geography 16:337–355.

Specht, R. L., and A. Specht. 1999. Australian plant
communities: dynamics of structure, growth and biodiversity.
Oxford University Press, Melbourne, Australia.

Suckling, G. C., E. Backen, A. Heislers, and F. G. Neumann.
1976. The flora and fauna of radiata pine plantations in
north-eastern Victoria. Forest Commission of Victoria,
Melbourne, Australia.

Terborgh, J. 1974. Preservation of natural diversity: the
problem of extinction prone species. BioScience 24:715–722.

Thomas, C. D., and W. E. Kunin. 1999. The spatial structure of
populations. Journal of Animal Ecology 68:647–657.

Tilman, D., R. M. May, C. L. Lehman, and M. A. Nowak.
1994. Habitat destruction and the extinction debt. Nature
371:65–66.

Tocher, M. D., C. Gascon, and B. L. Zimmerman. 1997.
Fragmentation effects on a Central American frog commu-
nity: a ten-year study. Pages 124–137 in W. F. Laurance and
R. O. Bierregaard, editors. Tropical forest remnants: ecology,
management and conservation of fragmented communities.
University of Chicago Press, Chicago, Illinois, USA.

Tubelis, D. P., D. B. Lindenmayer, D. A. Saunders, A.
Cowling, and H. A. Nix. 2004. Landscape supplementation
provided by an exotic matrix: implications for bird conser-
vation and forest management in a softwood plantation
system in south-eastern Australia. Oikos 107:634–644.

Turner, I. M. 1996. Species loss in fragments of tropical rain
forest: a review of the evidence. Journal of Applied Ecology
33:200–209.

UNEP (United Nations Environment Program). 1999. Global
environmental outlook 2000. United Nations Environment
Programme, Nairobi, Kenya.

Viveiros de Castro, E. B., and F. A. S. Fernandez. 2004.
Determinants of differential extinction probabilities of small
mammals in Atlantic forest fragments. Biological Conserva-
tion 119:73–80.

Walters, J. R., H. A. Ford, and C. B. Cooper. 1999. The
ecological basis of sensitivity of brown treecreepers to habitat
fragmentation: a preliminary assessment. Biological Conser-
vation 90:13–20.

Wethered, R., and M. J. Lawes. 2003. Matrix effects on bird
assemblages in fragmented afromontane forests in South
Africa. Biological Conservation 114:327–340.

Wiens, J. 1999. The science and practice of landscape ecology.
Pages 371–383 in J. M. Klopatek and R. H. Gardner, editors.
Landscape ecological analysis. Springer-Verlag, New York,
New York, USA.

Woodroffe, R., and J. R. Ginsberg. 1998. Edge effects and the
extinction of populations inside protected areas. Science 280:
2126–2128.

Yamaura, Y., K. Katoh, and T. Takahashi. 2006. Reversing
habitat loss: deciduous habitat fragmentation matters to
birds in a larch plantation matrix. Ecography 29:827–834.

Zanette, L., P. Doyle, and S. M. Tremont. 2000. Food shortage
in small fragments: evidence from an area-sensitive passerine.
Ecology 81:1654–1666.

Zanuncio, J. C., J. A. Mezzomo, R. N. Guedes, and A. C.
Oliveria. 1998. Influence of strips of native vegetation on
Lepidoptera associated with Eucalyptus cloezianna in Brazil.
Forest Ecology and Management 108:85–90.

APPENDIX A

Measure of vegetation structure and plant species composition recorded at each five vegetation plots established at each site in
the study (Ecological Archives M078-023-A1).

APPENDIX B

Bird species recorded in the study (Ecological Archives M078-023-A2).

DAVID B. LINDENMAYER ET AL.590 Ecological Monographs
Vol. 78, No. 4

154



Chapter 10 

A statistical methodology for tracking long-term change in reporting 
rates of birds from volunteer-collected presence-absence data 

 Published in Biodiversity and Conservation (2009) 18, 1305-1327 

Authors: Cunningham, R, and Olsen, P  

155



156



ORI GIN AL PA PER

A statistical methodology for tracking long-term change
in reporting rates of birds from volunteer-collected
presence–absence data

Ross Cunningham Æ Penny Olsen

Received: 2 May 2008 / Accepted: 20 October 2008 / Published online: 14 December 2008
� Springer Science+Business Media B.V. 2008

Abstract The ability to track change in biodiversity is essential to guide sustainable

management and meet biodiversity monitoring, evaluation and reporting requirements, yet

long-term data are usually scarce. Birds Australia has developed a simple survey meth-

odology for use by their nationwide network of volunteers; it involves the collection of

data on the presence–absence of species at repeatedly visited sites. Here we present a

statistical methodology for use with these binary data to examine long-term change, using

as an example records from a major bioregion of eastern Australia, 1999–2007. Regression

splines were employed to model trend as a smooth nonlinear function of time within a

generalised linear modelling framework. Confidence intervals based on bootstrap resam-

pling provided a basis for assessing the significance of change, and a method was

incorporated for identifying important change points in the trajectory from second deriv-

atives of the curve. The methodology proved sensitive to change and the impact of

extended dry periods was evident. The populations of several woodland species were found

to be in significant decline. Two composite indices to track change common to a group of

birds were developed and/or adapted from the existing literature. The results confirm the

usefulness of repeated 2-ha presence–absence survey data to provide insight into patterns

of long-term trends in bird populations. The statistical methodology described offers a

means of tracking trends and identifying important time points and is particularly useful

in situations where surveys of presence–absence of species are the most efficient way to

gather long-term data.
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Introduction

As a group birds are exceptionally well known, not least because they are visible, relatively

easy to identify and enjoyed by a large and devoted section of the human population. A

great many birdwatchers monitor birds and contribute voluntarily to bird atlases: data

collection and management programs aimed not only at recording the distribution of

various species but also their status (Vorisek and Marchant 2003; Danielsen et al. 2006;

Dunn and Weston 2008). Bird atlases thus provide some of the most extensive empirical

data on birds at significant spatial and temporal scales.

Although the representativeness of group-specific indices of biodiversity has been

questioned, bird data have been argued to be a good surrogate for biodiversity in certain

habitats (Furness and Greenwood 1993; Gregory et al. 2003, 2005; Pereira and Cooper

2006). Importantly, the need for information on biodiversity change is urgent and many

bird atlases are unique in that they have been in operation for some years and thus provide

a substantial baseline (Loh et al. 2005; Watson 2005). Moreover, other long-term moni-

toring is rare, in part because it is poorly funded, sustained commitment is lacking and the

activity itself is seen as academically unchallenging (e.g. Balmford et al. 2005a).

There have been calls for the research community to develop indicators of change in

biodiversity and tools for studying trends and evaluating the success of interventions, not

only to monitor biodiversity and progress towards targets, but to service the information

needs of assessments of the consequences of ecosystem change for humankind (e.g. Watson

2005; Carpenter et al. 2006). Despite this need there are, as yet, few rigorous analyses of

long-term temporal patterns in biodiversity and the success or otherwise of management

action is seldom monitored effectively, if at all (Jenkins et al. 2003; Balmford et al. 2003,

2005a). Threatened species lists and rates of change are widely used and are compelling, but

they are of limited value in monitoring biodiversity loss and for some taxonomic groups even

the number of species is poorly known (Possingham et al. 2002; Quayle and Ramsay 2006).

While single species assessments are fundamental, individual trends vary widely and are

difficult to assess as a whole. Indeed, the value of single species as umbrella indicators of

the general state of biodiversity has been questioned (Lambeck 1997; review by Roberge

and Angelstam 2004). Perhaps most importantly, changes to a raft of single species neither

communicate clearly to a policy audience nor translate readily to policy (Gregory et al.

2005; Watson 2005).

Consequently, there has been recognition of the value of meta-analyses (i.e. integrating

results across species) of change in populations of representative species and the statistical

methodologies are being developed (Buckland et al. 2005; Collins and Halliday 2005; Côté

et al. 2005). The UK Wild Bird Indicator, adopted by the UK government (Siriwardena

et al. 1998; Fewster et al. 2000), has been hailed as ‘arguably the most influential measure

[of sustainability] to date’ (Balmford et al. 2005b). Popularly known as the skylark index, it

is one of a handful of formalised, headline measures of national quality of life (Bazilchuk

2004). Europe-wide sustainability indicators based on bird data are also in development

(van Strien et al. 2001; Gregory et al. 2005, 2007).

The Atlas of Australian Birds is one of the largest continent-wide, wildlife databases in the

world. Administered by Birds Australia, it contains some six million records from 400,000

surveys and survey sheets continue to come in at the rate of 700–1,000 per week (Barrett et al.
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2003; Dunn and Weston 2008). The Atlas has a well-established network of volunteers and

centralised database, with newsletters, web or form based data submission, and other support

systems. The data have been collected in a standardised manner for some years and offer a rare

opportunity to assess change in bird populations over that period and into the future.

The bulk of the Atlas of Australian Birds data are presence–absence and as such differ

from the data employed in the UK indices, which are essentially abundance data gathered

by annual breeding bird surveys over a relatively small and well-covered area. The Aus-

tralian situation is more akin to some of the developing parts of the world where

ornithologists and birdwatchers are relatively few in relation to the area to be monitored

and collection of presence–absence data are the most practical way to cover a huge

continent and a wide range of habitats (e.g. in Africa; Bennun et al. 2005).

This paper describes a statistical methodology for modelling the long-term trend in

reporting rates for individual bird species (and associated confidence intervals) using

presence–absence data. Composite, multi-species indices, which may be used to provide

insight into changes in avian or general biodiversity, are calculated, based on the fitted

individual curves. The method is essentially an adaptation of that described by Fewster

et al. (2000), which was developed for abundance data. In addition, ‘significant’ change

points in trends are identified and summarised over all species with a view to providing

insight into the causes of change.

The method was developed using Atlas data collected in the temperate, sub-humid

woodland bioregion, where a suite of birds is widely considered to be in decline (Reid 1999;

Traill and Duncan 2000; Ford et al. 2001). Because bird taxa are diverse and heterogeneous

in terms of life history, ecology, abundance, inter-specific interactions and other factors (e.g.

Fewster et al. 2000; Buckland et al. 2005), temporal trend patterns between taxa are unlikely

to be uniform. For composite indices, categorising species on the basis of these charac-

teristics is not necessarily informative in regard to long-term trend profiles. Therefore, ways

of grouping species using our analysis were explored. Grouping according to the trend

revealed by the analysis was compared with an independent, prior assignment of trends in

status of birds in the woodlands. Finally, the sensitivity of the indices in reflecting change by

a post hoc assignment of bird to groups based on individual trend profiles was assessed.

Methods and results

Selection and nature of presence–absence data for analysis

To develop and evaluate the statistical methodology we used Atlas of Australian Birds data

collected using the 20-min, 2-ha survey method (Barrett et al. 2003) and, because our aim

was to assess change, included only sites that were surveyed more than once.

The data were collected by a large number of volunteers. The 2-ha survey method

entails the recording of all species seen, including those flying over the area, during a 20-

min search. Observers are instructed to choose sites that are representative and encouraged

to visit once each season for at least a year.

We focused on the temperate sub-humid woodlands of eastern Australia, as defined by

Hobbs and McIntyre (2005), who stratified the continent into 18 major agro-climatic

regions that closely parallel accepted avifaunal divisions. In that woodland bioregion, data

were sufficiently numerous and the status of the birds was reasonably well known. Initially,

we focused on 56 woodland birds categorised by Reid using independent data into those

that had declined or increased in abundance in the bioregion since settlement (based on
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Reid 1999 and Traill and Duncan 2000) and then excluded migrants (because, as Gregory

et al. 2005 have noted, the drivers for change in migrants may occur elsewhere and our

interest was in regionally driven trends).

Limited data screening was necessary to facilitate model fitting. Data exclusion criteria

were:

• Surveys from before January 1999 and after December 2007;

• Sites where no birds from the species list were observed during surveys;

• Sites with repeat observations only from the same year—that is, sites having surveys in

at least two different years were included;

• To obtain meaningful statistical analysis of the data, species having an overall reporting

rate (see below) of \3% were excluded.

This left 31 bird species and a total of 2,625 surveys made at 258 sites (Table 1). The sites

were spread across the region (Fig. 1) and the surveys were adequately spread across years

and seasons (Table 1b). Nevertheless, the temporal distribution of surveys at sites exhib-

ited a feature common to many studies of this type, in which data collection is to some

extent haphazard, that is, there are data gaps that create a somewhat ‘unbalanced’ data

structure (Fig. 2).

Modelling long-term trend in populations of individual bird species

Data for each species were first grouped by year and month and observed reporting rates

(often expressed as a percentage) were calculated. Reporting rate is defined as the pro-

portion of surveys in which the species was recorded.

A plot of reporting rates showed high intra-year and inter-year variability and did not

generally provide useful information on longer-term temporal trends. Hence, a generalised

linear model (GLM) framework for data modelling was employed. Initially, regression

splines were fitted with two knots (set at the terciles 36 and 72 months since monitoring

commenced) to highlight long-term trends, and a second order harmonic to account for

seasonal variation in reporting rates (Fig. 3). With regression splines polynomials are fitted

to segments of data where the segments are separated by a sequence of user specified

‘knots’. The piecewise polynomials are belted together at these ‘knots’ (see Ramsay 1988

for details). The method of fitting used was a weighted least-squares for over-dispersed

proportions or quasi-binomial data (the dispersion parameter is estimated rather than set to

one, as would be the case for binomial data).

Other methods of smoothing (e.g. smoothing splines) were initially explored but are not

presented as the results were similar. Regression splines and smoothing splines are very

flexible and the degree of ‘roughness’ can be easily modified. As the focus was on long-

term patterns a ‘smooth’ smooth was chosen. Adjustment for seasonality (as in Fig. 3) did

not change the long-term trend estimates because the two trend components are almost

orthogonal. Thus, because the interest was in inter-year variability and, in particular, long-

term trends, the seasonal component was ignored and a smoothing spline with 1 knot (set at

the median-the 54th month) was fitted. Both decisions are intrinsic to the adopted method

of inference (bootstrap sampling of sites) and hence do not affect the main conclusions.

The method did not explicitly account for possible serial dependence arising from the

fact that data are repeated measures. Attempts to fit a random site effect to account for

intra-site dependence usually failed due to scant data and/or the imbalance in the data. In

any case, data aggregation and likely detection errors probably obscure this feature. As is

discussed later, the repeated measures structure of the data was preserved for inference.
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Confidence intervals and inference

Interpretation of trend curves requires knowledge of the precision of the trend line. By

calculating approximate confidence intervals an assessment of whether long-term changes

are statistically significant can be made. Calculation of standard errors and confidence

limits are standard in the case of parametric regression models, but are somewhat more

difficult when there are no pre-existing explicit mathematical formulations. Hence, Fewster

et al. (2000) were followed and the bootstrap method was used to obtain approximate

confidence intervals of smooth curves for individual species and composite indices. This

Table 1 (a) The 31 species (both native and introduced) included in the models and their a priori clas-
sification of conservation status based on Reid (1999); and (b) temporal structure of the data: number of
surveys cross-classified by year and month

(a) The 31 species

Woodland ‘increasers’ Woodland ‘decliners’

Sulphur-crested cockatoo Cacatua galerita White-throated treecreeper Cormobates leucophaea

Crimson rosella Platycercus elegans Brown treecreeper Climacteris picumnus

Eastern rosella Platycercus eximius Speckled warbler Chthonicola sagittata

Red-rumped parrot Psephotus haematonotus Striated thornbill Acanthiza lineata

Crested pigeon Ocyphaps lophotes Yellow thornbill Acanthiza nana

Yellow-rumped thornbill Acanthiza chrysorrhoa Buff-rumped thornbill Acanthiza inornata

Noisy miner Manorina melanocephala Brown thornbill Acanthiza pusilla

Black-faced cuckoo-shrike Coracina novaehollandiae Grey-crowned babbler Pomatostomus temporalis

Grey butcherbird Cracticus torquatus Grey shrike-thrush Colluricincla harmonica

Pied butcherbird Cracticus nigrogularis Olive-backed oriole Oriolus sagittatus

Australian magpie Cracticus tibicen Restless flycatcher Myiagra inquieta

Pied currawong Strepera graculina Jacky winter Microeca fascinans

Willie wagtail Rhipidura leucophrys Eastern yellow robin Eopsaltria australis

Magpie-lark Grallina cyanoleuca Red-browed finch Neochmia temporalis

White-winged chough Corcorax melanorhamphos

Common starling Sturnus vulgaris

House sparrow Passer domesticus

(b) Temporal structure of the data

Year/month J F M A M J J A S O N D Total

1999 13 3 3 26 12 7 21 16 20 36 7 9 173

2000 36 27 22 35 28 12 34 26 28 66 33 34 381

2001 47 28 25 60 47 37 51 55 38 64 31 39 522

2002 32 27 32 23 24 13 31 41 31 17 6 22 299

2003 30 32 23 22 12 31 21 23 12 28 15 21 270

2004 30 18 14 31 34 13 24 45 33 23 30 20 315

2005 40 17 29 25 11 32 30 21 40 49 17 28 339

2006 31 13 23 25 14 7 20 11 35 30 2 12 223

2007 15 0 27 14 2 4 4 9 6 14 0 8 103

Total 274 165 198 261 184 156 236 247 243 327 141 193 2,625
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eliminated the need for back-transforming standard errors and meeting assumptions

applicable in parametric analysis, such as independence.

In brief, the bootstrap method adapted and implemented proceeded by drawing 500

random samples of N available sites, with replacement, from the original N sites. Each

sample was then treated as actual data, even though there were almost certainly some

duplicates, and the modelling process outlined above was followed to obtain a new trend

a

b

Fig. 1 Study region and spatial
distribution of the data: a the
location of the temperate sub-
humid woodlands of south-east
Australia as classified by Hobbs
and McIntyre (2005); b spatial
distribution of 2-ha Atlas survey
sites according to latitude and
longitude (numerals show the
number of repeat surveys)

1310 Biodivers Conserv (2009) 18:1305–1327

123

162



curve. After all 500 (or more) replicates were completed, fitted values for each time point

were sorted into ascending order and the 5th and 95th percentiles were computed (Fig. 4).

The repeated measures nature of the data was taken into account by re-sampling sites, not

observations. Although the number of sites included in each bootstrap sample was the

same, the number of observations differed. This may affect the precision of the bootstrap

estimates in some unknown, complicated way but was assumed to be small and, for this

analysis, was ignored. The more balanced the data, the smaller the effect will be.

As well estimating a general smooth curve, the linear trend was computed. For reporting

rates from most bird populations, the linear component of the smooth trend does not

generally provide an adequate representation of the ‘true’ trend and should be interpreted

with caution. To assist with interpretation, the statistical significance of the linear trend was

assessed by comparing the actual trend with the 500 bootstrap estimates, and ‘significant’

trends were regarded as those that fell within the 5% tail of the bootstrap distribution.

Analysis of change points

The analysis provides a smooth trend curve that tracks change for each species. It is useful

to further analyse the nature of any change by examining the curvature properties of the

trend line. This was achieved by calculating the second derivative of the trend curve (see

Fewster et al. 2000). If the second derivative is greater than zero the curve is turning

Fig. 2 Graphical display of site surveys by time (months since January 1999). An unmarked cell means that
no survey was undertaken
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upward; if it less than zero then the curve is turning downward; and if at zero it is changing

at steady rate or not at all. Points at which the second derivative is significantly different

from zero identify periods in which something is happening to alter the rate of change.

These change points were signified on the trend line by: a green circle for a significant

acceleration in the rate of change, which happens in the troughs as the reporting rate begins

to bottom out and then swings up to increase; and a blue circle for a deceleration, which

occurs over the peaks (see Fig. 4). It is important to note that these markers indicate

‘acceleration’ and ‘deceleration’ of the curves, respectively, and not ‘significantly’

increasing and decreasing reporting rates, respectively.

Presentation of results

The results are presented graphically for individual species as follows (see example in

Fig. 4):

1. The actual pattern in the reporting rate over time is plotted as a black line (usually

highly variable).

2. The ‘smooth fit’, represented as a smooth black line, is obtained by fitting a regression

spline.

3. The 5th and 95th percentiles, based on 500 bootstrap samples, are represented by

dotted lines.

Fig. 3 An example of the basic statistical model fitted to data for the speckled warbler. Observed data
(black line) and fitted trend lines are based on regression splines (red line) with one knot and with an
additive second order harmonic fit for the intra-year seasonal component (blue line)
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4. A linear fit, i.e. a smoothing spline of order 1, is shown in red. If it is statistically

significant (in the upper or lower 5th percentile of the 500 bootstrap linear fits) it is

highlighted as a bold, thick line.

5. ‘Significant’ change points are indicated by blue dots, which mark a deceleration of

the smooth curve, that is, a slowing in the rate of change, and green dots, which mark

an acceleration or increase in the rate of change.

6. The sub-graph, a rug plot, shows the relative sample size for each month, which is

related to the precision of estimates at each month and is provided as an additional aid

to interpretation.

Composite indices (meta-analyses)

Combining information across species may provide a useful measure of aggregate biodi-

versity change in a general and representative fashion. If there are common patterns among

individual taxa in the group, then meta-analysis will provide a more informative, succinct

summary of common long-term trend patterns. In order to determine the degree of

homogeneity in composite trend patterns, trends for individual taxa are best interpreted in

addition to composites.

To formulate multi-species indices from presence–absence data, several of the com-

posite measures of biodiversity discussed and developed by Buckland et al. (2005), which

Fig. 4 An example of the components of the final graph for a single species, the magpie-lark

Biodivers Conserv (2009) 18:1305–1327 1313

123

165



pertain to abundance data, were adapted. The two measures we selected to assess and

evaluate change relate to primary aspects of biodiversity, namely, number of species and a

measure of overall ‘abundance’. Other measures, such as the Shannon, Simpson and

evenness, were considered but fail to measure biodiversity in a simple, easy to interpret

way, as noted by Buckland et al. (2005).

The two measures of biodiversity were calculated as follows:

(i) Expected number of species per random site

Defining pij to be the reporting rate of species i in year j across sites, then Sj ¼
P

i p̂ij where

p̂ij is the predicted reporting rate from the model for each of the m species. This arises from

applying a little statistical theory, that is, if we let Iij be an indicator random variable taking

a value 1 if species is observed at time j and zero otherwise, then the total number of

species observed will be Sj ¼
P

i

Iij and ESj ¼
P

i

EIij ¼
P

i

p̂ij ¼ Ŝj:

(ii) Mean log relative odds (an index of relative abundance)

Mean relative odds (R) was calculated as:

Rj ¼
1

m

X

i

log
pij

1� pij

� �

:

This is the mean of the logarithm of the odds ratio at time j. Low values in the geometric

mean eRjð Þ correspond to low abundance (low reporting rates) and high values correspond

to high average reporting rates.

Fitted to the data for the 31 bird species used in this study, the two multi-species indices

show trend lines and associated confidence interval estimates (Fig. 5a, b). These suggest an

overall downward trend, but the evidence is weak. They do, however, highlight the dip in

species richness and relative abundance for the drought years beginning in 2001–2002 and

2006. (Mean rainfall at a major town in the bioregion, Forbes, for example, is 566 mm per

annum, but it was 443 mm in 2001, 265 mm in 2002, and 158 mm in 2006.)

A meta-data summary display of change points

The use of change points to identify particular periods of interest was investigated by

graphing significant change points for all species from 1999 to 2007 in a single graph

(Fig. 6). This clearly shows changes that, in this case, readily relate to periods of average

and extra-low rainfall.

A method for classifying bird long-term trend profiles

A method of classifying taxa based on the pattern of long-term variation was trialled. Since

patterns can be hard to find in data of high dimension, principal components analysis

(PCA) was employed to provide insight into latent structure within the multivariate data by

reducing dimensionality. Modelling using regression splines produces a set of estimates

associated with the spline basis functions. These estimates provide comparable five-

dimensional representation of overall reporting rates and temporal patterns across bird

species. PCA facilitates expression of these data in such a way as to highlight similarities

and differences between species. As the focus was on change in reporting rates, rather than
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a

b

Fig. 5 Trend lines for the two composite indices for 31 bird species: a species richness; b abundance
(geometric mean of odds ratio). The black line is the ‘observed’ index, the dotted outer lines denote the
upper and lower fifth percentile points of the bootstrap distribution, blue denotes significant decelerations in
the trajectory of the trend line and green denotes periods of significant acceleration
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overall level, the parameter estimates were centred by subtracting the mean for each

species.

The first two principal components accounted for 90% of the total variance in the six

dimensions. These two components related to year-to-year patterns (excluding the first and

last years), but neither related to a pattern of long-term change. There was weak agreement

between Reid’s a priori classification and subsequent temporal trends indicated by the

current analysis (1999–2007) (Fig. 7). It should be noted that if the data parameter esti-

mates are not centred the vector weights for the first principal component are all roughly

equal and share the same sign, suggesting that the component represents an overall

reporting rate. This non-centred component appears to have a stronger association with

Reid’s original classifications than with either component for centred data and indicates

that rarer species are more likely to be ‘falsely’ declared decliners than are more common

birds. Given that Reid’s method of categorisation was likely to have picked up species that

had already changed in abundance, rather than being actively changing at the time of the

study, this finding is not entirely unexpected.

As an alternative approach, species were classified based on a visual interpretation of

each graph. At least 12 of the 31 species showed evidence of uni-directional downwards

trend over the data period, 1999–2007, eight strongly (‘significantly’) and four weakly. The

balance of the species (n = 11) showed no overall change, or showed evidence of increase

(n = 8) (Table 2; Appendix).

Fig. 6 A graphical display of change points for each of the 31 woodland bird species. Blue denotes
significant decelerations in the trajectory of the smooth trend line of reporting rate (which happens around
peaks) and green denotes periods of significant acceleration (which happens around troughs)
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A sensitivity analysis of the composite indices

A simple way of assessing the sensitivity of the composite indices to reflect long-term

change for a group of species is to run an analysis for a post hoc groupings based on trends

for individual species (Table 2). An analysis for the group of 12 decliners clearly confirms

the adverse change over the past 9 years in the composite indices (species richness and

relative abundance) for this group (Fig. 8). This result provides empirical support for our

choice of composite indices and our statistical methodology for assessing significance of

change.

Discussion

Methodology

This paper describes the development of a statistical methodology for tracking and

assessing change using binary data. Regression splines, which offer a very flexible way of

capturing and highlighting non-linear, temporal patterns in data, were successfully used to

model long-term temporal trends in grouped binary data. Bootstrap resampling of sites was

Fig. 7 Principal components analysis of coefficients associated with regression splines, showing a weak
agreement between the a priori classification of decliners (D) and increasers (I) (as listed in Table 1) and the
subsequent trend, 1999–2007. Species close together on the plot show similar patterns in terms of the first
two principal components, which related to inter-annual patterns. The parameters were centred
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used to quantify uncertainty about the smooth curves (splines) and so facilitate inference,

and significant change points were highlighted to show favourable and adverse periods for

birds. The matches between the mean of 500 bootstrap samples and the indices were good,

giving confidence in the methodology. The resulting models demonstrate the usefulness of

presence–absence, volunteer-collected data for tracking change in bird populations.

Previous methods rely on abundance data (e.g. Fewster et al. 2000; Buckland et al.

2005), whereas the statistical methodology described in this paper is a modification for use

with binary data. The methodology offers a practical way to empirically assess change

in situations where abundance data is scarce and hard to gather on a sufficient scale. Binary

(species presence–absence) surveys are particularly appropriate for large areas, where the

volunteer population is relatively small (e.g. Bennun et al. 2005). Not least, extensive

binary datasets and volunteer networks have already been established and are a popular and

effective way of engaging the community in conservation through their contribution to the

science.

Because the proportion of spatial units occupied by a species can be assumed to be

useful surrogate for abundance, any change detected in species presence–absence data is

usually indicative of change in abundance. Hence, bird Atlas data provide two of the three

aspects recommended for an index of biodiversity by Buckland et al. (2005): number of

species and overall abundance (and could potentially provide the third, evenness).

Strengths and weaknesses of the data and the analyses

Despite the obvious power in a large data set there are several potential limitations in using

Atlas data to infer temporal trend patterns. Time trends or other temporal effects calculated

directly from Atlas data may not be as informative as for complete data collected more

strategically because the apparent trend may depend on the pattern of missing observations.

That is, there is a confounding between the time of the survey and the site. In this analysis,

these effects were reduced by selecting only sites that had at least one observation in at

Table 2 Post hoc classification of the 31 species based on trends revealed by the model (see Appendix
figures)

Strong evidence
of decrease

Weak evidence
of decrease

No change Weak evidence
of increase

Eastern rosella Buff-rumped thornbill Sulphur-crested
cockatoo

White-throated
treecreeper

Red-rumped parrot Willie wagtail Crimson rosella Striated thornbill

Yellow-rumped thornbill Restless flycatcher Crested pigeon Brown thornbill

Black-faced cuckoo-shrike Red-browed finch Brown treecreeper Grey-crowned babbler

Common starling Speckled warbler Olive-backed oriole

House sparrow Yellow thornbill Pied butcherbird

Magpie-lark Grey shrike-thrush Pied currawong

Jacky winter Eastern yellow robin Noisy miner

Grey butcherbird

Australian magpie

White-winged chough

Strong evidence equates to a significant linear trend; all other species were deemed to be in particular
category based on visual evidence in the graph
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least two separate years (i.e. providing a measurement of change at an individual site) and

by basing inference on bootstrap samples of sites rather than observations.

In regards to fitted smoothed lines, the effect of any dependence between observations,

as may be the case for repeated measures data, is typically small (e.g. Diggle et al. 1996).

However, the effect on estimated standard errors can be considerable. Bootstrap

a

b

Fig. 8 The change in a species
richness and b abundance (i.e.
geometric mean of odds ratio) for
the 12 species identified as
showing a strong or weak long-
term declining trend, 1999–2007
(also see Table 2; Appendix
figures)
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resampling of sites accommodated this structural feature of the data and it was assumed

that bird data were spatially independent as sites were geographically distant.

Trends for individual species and multi-species composites

The long-term trend patterns in the trial bird group, whether pre-classified as decliners or

increasers, were clearly heterogeneous, hence composite indices of these groups could

potentially mask or obscure long-term changes (as they do in Fig. 5). Post hoc grouping

based on trends in individual species, gave meaningful and transparent composites,

demonstrating that the composite indices are sensitive to aggregate trend patterns.

The composite indices (both species richness and abundance) of all 31 species (Fig. 5)

showed evidence of the adverse impact of drought beginning in late 2001, which eased in

2004 then returned in 2006, as did the more refined analysis of the 12 woodland decliners

(Fig. 8). Hence, the methodology is pleasingly sensitive to environmental change.

The species included in the trial were among the more common and widespread species

because of the data requirements of the methodology, hence the number that were

decreasing in abundance is worrisome, though perhaps not unexpected given that the

vegetation in southern part of the study area, in particular, is arguably the most degraded in

Australia, and several of the study years were exceptionally dry.

Some common attributes relating to individual trends in reporting rate were detected.

All 12 decliners are smallish species (body weight \ 120 g, n = 12, c. 7–118 g; median

20 g) that forage on the ground in open, grassy patches (although the black-faced cuckoo-

shrike does so only occasionally), eight are insectivores and the remaining four are ground-

feeding granivores. This result is positive from a data quality perspective because these are

foraging groups widely recognised as disappearing from the south-eastern woodland from

the impacts of past clearing and continued degradation primarily from overgrazing by

livestock (Garnett and Crowley 2000; Lindenmayer et al. 2003; Olsen et al. 2005). The

remainder, particularly the increasers, included all the larger (n = 19, c. 6–790 g; median

78 g), more aggressive species, the non-ground feeders and a few small ground foraging

species. In addition, it is noted that larger species tend to be slower to respond numerically

to change (Gregory et al. 2005).

In conclusion, the value of volunteer-collected, presence–absence Atlas data for

tracking long-term change in bird populations is strongly supported by the analysis. The

statistical methodology developed to elucidate pattern from binary data is statistically

robust, relatively simple, employs existing data (which is itself relatively easily gathered),

is sensitive to environmental change, and easy to communicate and update. It is important

that it be applied and interpreted at both the single species level and for composites, ideally

of like trending species, and at various spatial and temporal scales, to provide both the

intimate and the bigger picture. There is a great need for such tools to meet biodiversity

reporting requirements and guide sustainable land management (Balmford et al. 2005a, b).
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Appendix

Individual species plots: (a) species showing strong evidence of decrease
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Individual species plots (a) continued

Individual species plots: (b) species showing weak evidence of decrease
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Individual species plots: (c) species showing no change
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Individual species plots: (c) continued
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Individual species plots: (d) species showing evidence of increase
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a b s t r a c t

Work in many parts of the world has discussed the decline of biodiversity in regions dominated by
agriculture. We report the results of a major study documenting the longitudinal profiles of birds
between 1998 and 2009 within 66 patches of temperate woodland in a heavily cleared and grazed
agricultural region of south-eastern Australia. Many researchers have forecast the loss of bird biota from
this region and others that also were formerly dominated by temperate woodland.

We had sufficient high quality data to analyse the longitudinal profiles of reporting rates for 76 of the
116 individual bird species recorded in our 12-year study. Unexpectedly, only four of the 76 species
analysed (5.6%) exhibited a significant negative linear decrease in reporting rate. More surprisingly, 32
(42.1%) exhibited a significant positive linear increase in reporting rate, including several taxa of conser-
vation concern. These increases occurred despite a series of below-average rainfall years. Reporting rates
were too low to formally model long-term trends in some other bird species widely considered to be of
conservation concern such as the Diamond Firetail (Stagonopleura guttata) and Speckled Warbler
(Chthonicola sagittata).

Many authors have used functional (and other) groups to forecast bird species likely to be lost from
Australia’s temperate woodlands. However, we found no clear links between life history attributes and
long-term trend patterns of species.

Our findings contrast with recent findings from other temperate woodland-dominated regions in east-
ern Australia where losses in bird populations have been documented. However, they parallel other
investigations such as in central New South Wales. These similarities among, and differences between,
studies suggest regional differences in temporal patterns in bird population dynamics. Many of the
observed changes in reporting rates were positive and they provide hope that forecast future losses of
a large proportion of existing temperate woodland bird assemblages in south-eastern Australia may
not be realised uniformly in all regions.

� 2010 Published by Elsevier Ltd.

1. Introduction

It is almost a truism that the quantification of long-term popu-
lation trends in key elements of the biota is a critically important
task in guiding effective biodiversity conservation (Downes et al.,
2008; Holmes, 2007; Lindenmayer and Likens, 2010). Long-term
studies can provide definitive evidence of changes (both positive
and negative), possible insights into the mechanisms underlying
such changes (Kruuk and Hill, 2008) and, in turn, stimulate and in-
form policies and management interventions to arrest declines
where they have occurred (Likens, 1989; Lindenmayer and Likens,
2009). In contrast, short-term studies can sometimes yield spuri-
ous or misleading results (Stohlgren et al., 1995; Strayer et al.,
1986). Similarly, while observations taken in two periods a long

time apart can be interesting, they may reveal little about trends,
especially where considerable inter-year variability in populations
is present.

High quality, longitudinal data on populations of biota in agri-
cultural areas are important because: (1) Losses of biodiversity
have been particularly pronounced in landscapes which have
been extensively cleared for agriculture or where agricultural
intensification has occurred (Attwood et al., 2009; Benton et al.,
2003; Brown, 2008; Fischer et al., 2008; Ford et al., 2009; Kerr
and Deguise, 2004; Millennium Ecosystem Assessment, 2005).
(2) Extensive investments are being made in conservation pro-
grams in agricultural areas around the world, such as agri-envi-
ronment schemes (Attwood et al., 2009; Kleijn et al., 2006,
2004). An understanding of changes in biota over time, including
responses to management interventions is pivotal to the success
(or otherwise) of these programs (Hajkowicz, 2009; Paton and
O’Connor, 2010). And (3) Some groups of biota such as birds play
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particularly significant ecosystem service and ecological function
roles in agricultural ecosystems (Sekercioglu, 2006; Whelan
et al., 2008).

Important regions where high quality, longitudinal data on bio-
diversity are urgently required are the agricultural ecosystems of
south-eastern Australia. These extensive temperate woodland eco-
systems have been cleared and heavily modified in the past
160 years for domestic livestock grazing and/or cropping (Benson,
2008; Lindenmayer et al., 2010; Montague-Drake et al., 2009).
Major losses in biodiversity have been forecast to occur in these
regions (e.g. Recher, 1999; also reviewed by Lindenmayer et al.
(2010)) and populations of birds have been a particular focus of re-
search in these ecosystems for over a decade (Attwood et al., 2009;
Ford et al., 2001, 2009; Reid, 1999).

There is a large literature on the biological attributes of species
that are associated with their risk of decline or chance of increase
in altered landscapes (reviewed by Haddad et al. (2008); Linden-
mayer and Fischer (2006); McKinney (1997); O’Grady et al.
(2004)). Many authors have made predictions about bird species
most at risk of decline, as well as those forecast to increase in Aus-
tralian agricultural landscapes (see Appendix A). For example, Ford
et al. (2001) hypothesized that birds which live, forage or nest in
the ground or shrub layers, hollow-nesters, and species that move
between spatially separated habitats (including migratory species)
will be among those taxa susceptible to decline (Appendix A).
Howes and Maron (2009) have argued that small-bodied taxa will
be susceptible to decline because of competition with larger hyper-
aggressive bird species. Some authors have suggested there have
been significant declines in groups of insectivorous birds in Austra-
lian agricultural landscapes such as robins (Zanette et al., 2000),

treecreepers (Cooper et al., 2002; Luck, 2003) and babblers (Cale,
2003).

Despite the extensive research conducted on temperate wood-
land birds in south-eastern Australia over the past 1–2 decades,
there is a paucity of data suitable for the direct quantification of
long-term changes in bird populations over time. There is a need
for a survey methodology with standardized protocols for repeat-
edly surveying a set of permanent field sites over a prolonged per-
iod (>10 years). Data from such study designs will not be
compromised by problems arising from short-term, incomplete
or piecemeal data, where apparent trends can be influenced by
the pattern of missing data (Cunningham and Olsen, 2009).

In this paper, we present a set of detailed analyses of temporal
trends in the reporting rates of birds from repeated surveys com-
pleted between 1998 and 2009 in the South West Slopes region
of New South Wales, south-eastern Australia. We use our analyses
to address a series of inter-related objectives:

� What are the long-term trend patterns of individual bird
species?
� Which species of birds show evidence of a linear decline or evi-

dence of a linear increase?
� Is there evidence that birds with particular life history attri-

butes or from particular functional groups show similar trend
patterns?

Answers to these questions will provide opportunities to better
understand the species which are showing temporal increases or
decreases and, in turn, better inform conservation management
of particular declining or threatened bird species. Our study

Fig. 1. Broad location of the study region where bird counts were completed between 1998 and 2009.
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outcomes also will have broad relevance to bird conservation and
restoration programs elsewhere around the world such as in the
Americas and Europe where biodiversity management is an impor-
tant part of a more integrated approach to agricultural and envi-
ronmental management and policy (e.g. Billeter et al., 2008;
Fischer et al., 2008; Kerr and Deguise, 2004; Laiolo, 2004) such as
agri-environment schemes (Attwood et al., 2009; Donald and
Evans, 2006; Kleijn et al., 2006, 2004).

2. Methods

2.1. Study area

Our study area comprised a 30 km � 30 km region south-east of
the town of Jugiong in southern New South Wales (Fig. 1). The
eucalypt-dominated grassy box-gum temperate woodlands in the
region have been particularly perturbed (Gibbons and Boak,
2002; Prober and Thiele, 1995) and more than 90% of the original
native vegetation cover has been removed in the past �160 years.

We surveyed birds at permanent sites established in 66 remnant
patches of temperate woodland (sensu Hobbs and Yates, 2000) over
a 12-year period between 1998 and 2009. It should be noted that
this period has included some of the lowest rainfall years in the past
century (Bureau of Meteorology, 2010a, see Fig. 2).

The 66 patches that we studied varied in size from 0.4 ha to
28.9 ha and were dominated by temperate woodland vegetation
types, particularly Yellow Box (Eucalyptus melliodora), Red Box
(E. polyanthemos), White Box (E. albens), Blakely’s Red Gum (E. blak-
elyi), Apple Box (E. bridgesiana) and Long-leaf Box (E. goniocalyx).
All of our temperate woodland patches were located on farms used
for grazing of domestic livestock (sheep and cattle) and these
patches remained subject to livestock grazing throughout the
duration of our study. None of the 66 patches have been subject
to biodiversity enhancement programs.

2.2. Target taxa

The focus of our study was bird assemblages associated with
eucalypt-dominated temperate woodlands. The South West Slopes
region has been targeted for a number of studies of birds (reviewed
by Montague-Drake et al. (2009)) but none of these have focused

on long-term trends. The South West Slopes is a species-rich area
for birds (Cunningham et al., 2008) with over 150 species having
been recorded (Barrett et al., 2003). These taxa vary widely in life
history attributes. As summarized in Appendix A, a number of
authors have suggested that bird species within particular groups
might be susceptible to similar patterns of temporal change.
Accordingly, for this study, we collated data from the literature
on life history and other attributes for each bird species. We sum-
marized data on body weight, group type (solitary, pairs or flock),
social system (monogamous or polygamous), type of nest (e.g. cav-
ity, cup, mud bowl), nest placement (e.g. horizontal fork, ground),
nesting height, clutch size, broods per year, movement behaviour
(resident versus migrant, latitudinal or altitudinal migrant), and
foraging guild.

2.3. Bird counting protocols

We recorded all birds seen and heard within 100 m at the 0 m,
100 m and 200 m plot points along a permanent 200 m long
transect established at each of our 66 woodland sites. We com-
pleted repeated point interval counts (sensu Pyke and Recher,
1983) at these three plot points on each site in early November
in 1998, 1999, 2000, 2001, 2003, 2005, 2007 and 2009. Early
November is the peak breeding season in the study region, when
most summer migrants are present and birds have established ter-
ritories and exhibit strong patterns of site fidelity (Lindenmayer et
al., 2002). For each point count, observers recorded birds that were
within the woodland site and within 100 m of the plot point.
Counts were completed between 5.30 and 9.30 am and were not
undertaken on days of poor weather (rain, high wind, fog or heavy
cloud cover).

During the 12 years of our study, a total of 12 different
observers participated repeatedly in bird surveys. Although
observers were highly experienced, they varied in their ability
to detect some groups of birds. Cunningham et al. (1999) and
Lindenmayer et al. (2009) showed that pooling counts from
two or more observers at the same site could compensate for
extra variability due to observer heterogeneity. Field et al.
(2002) showed that weather and other conditions on any given
day can influence bird detectability. Thus, in each of the eight
survey years between 1998 and 2009, each of our permanent

Fig. 2. Annual rainfall during study period for meteorological stations at Adelong (the nearest station to the study area with long-term records), compared to long-term
average annual rainfall.
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Table 1
Estimates of linear slope and the predicted 12 year change (log odds ratio) in the reporting rates of 76 individual species of birds between 1998 and 2009. A blank cell in the
significant trend column indicates no significant (P < 0.05) change in reporting rate.

Bird species Significant trend Linear slope Log odds ratio

Slope Std. dev. Ratio Std. dev.

Australasian Grebe 0.060 0.1071 0.711 0.4728
Australasian Pipit Increase 0.106 0.0618 1.583 4.2414
Australian Magpie Increase 0.161 0.0303 1.817 0.4325
Australian Raven 0.007 0.0373 �0.177 1.2079
Black-chinned Honeyeater �0.037 0.0588 �3.190 3.3464
Black-faced Cuckoo-shrike Decrease �0.064 0.0311 �0.599 0.3926
Brown Thornbill Increase 0.210 0.1125 3.004 1.3559
Brown Treecreeper Increase 0.123 0.0326 1.313 0.3937
Brown-headed Honeyeater 0.076 0.0600 1.703 2.1203
Buff-rumped Thornbill Increase 0.206 0.0456 2.770 1.7454
Common Bronzewing Increase 0.095 0.0317 1.479 0.6794
Common Starling Decrease �0.052 0.0310 �0.563 0.3668
Crested Pigeon Increase 0.166 0.0742 3.688 4.4386
Crested Shrike-tit �0.052 0.0365 �0.592 0.5180
Crimson Rosella Increase 0.059 0.0308 1.000 0.3841
Diamond Firetail Increase 0.128 0.0760 4.757 2.3499
Dollarbird �0.006 0.1682 0.654 1.1411
Dusky Woodswallow �0.042 0.0363 0.535 0.5098
Eastern Rosella Increase 0.128 0.0251 1.906 0.3746
European Goldfinch 0.003 0.0488 2.809 6.8563
Fairy Martin �0.029 0.0779 8.137 5.8392
Fuscous Honeyeater 0.056 0.1084 1.484 1.8404
Galah �0.017 0.0322 �0.299 0.4204
Gang-gang Cockatoo 0.040 0.1095 �0.810 2.7829
Golden Whistler 0.141 0.1147 12.845 4.5918
Grey Butcherbird �0.037 0.1220 0.856 0.6110
Grey Fantail Increase 0.083 0.0352 2.418 1.6690
Grey Shrike-thrush Increase 0.134 0.0288 1.828 0.4342
House Sparrow Decrease �0.276 0.0787 �10.422 7.1053
Jacky Winter Increase 0.067 0.0276 1.939 0.8265
King Parrot 0.069 0.0876 4.636 5.0212
Laughing Kookaburra 0.054 0.0395 0.799 0.4620
Leaden Flycatcher Increase 0.142 0.0644 1.049 2.2111
Little Friarbird Increase 0.123 0.0387 4.434 6.7558
Little Lorikeet �0.012 0.0430 �10.599 7.5885
Magpie-lark 0.028 0.0329 0.662 0.5297
Mistletoebird 0.024 0.0275 0.650 0.3520
Nankeen Kestrel �0.159 0.1443 �1.109 0.5016
Noisy Friarbird Increase 0.016 0.0265 0.127 0.3774
Noisy Miner 0.242 0.0482 16.289 4.4234
Olive-backed Oriole 0.084 0.0528 3.673 4.0634
Pacific Black Duck 0.129 0.1306 4.129 1.4223
Peaceful Dove Increase 0.054 0.0252 0.709 0.5561
Pied Currawong 0.045 0.0718 1.472 2.7435
Rainbow Bee eater �0.006 0.0399 0.176 0.4829
Red Wattlebird Increase 0.045 0.0233 0.484 0.3691
Red-browed Finch �0.076 0.1043 �5.715 5.5557
Red-capped Robin 0.125 0.1452 11.873 4.1669
Red-rumped Parrot Increase 0.071 0.0319 1.027 0.3579
Restless Flycatcher �0.061 0.0373 �0.067 0.4433
Rufous Songlark Increase 0.079 0.0287 1.938 0.3790
Rufous Whistler Increase 0.137 0.0315 1.165 0.4268
Sacred Kingfisher �0.018 0.0351 �0.297 0.4553
Silvereye 0.051 0.0560 1.074 2.3367
Spotted Pardalote 0.038 0.0320 1.183 1.6754
Striated Pardalote Increase 0.145 0.0306 2.041 0.4595
Striated Thornbill 0.076 0.0566 3.960 4.0223
Stubble Quail 0.135 0.1326 2.588 0.7231
Sulphur-crested Cockatoo Decrease �0.095 0.0367 �0.662 0.3931
Superb Fairy-wren 0.041 0.0259 0.874 0.4319
Tree Martin 0.011 0.0464 �1.667 4.0889
Varied Sittella Increase 0.160 0.0731 1.128 0.9047
Weebill Increase 0.217 0.0322 5.878 5.6225
Welcome Swallow 0.061 0.0424 6.038 3.2116
Western Gerygone Increase 0.148 0.0534 1.466 0.8337
White-browed Scrubwren Increase 0.090 0.0528 2.600 4.7824
White-naped Honeyeater 0.083 0.0604 18.748 4.8702
White-plumed Honeyeater �0.047 0.0370 �0.084 0.5032
White-throated Gerygone Increase 0.095 0.0323 2.696 1.9767
White-throated Treecreeper Increase 0.038 0.0227 2.024 0.9312
White-winged Chough 0.062 0.0499 2.503 2.2678
White-winged Triller Increase 0.110 0.0451 1.482 0.9110

(continued on next page)
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field sites was surveyed by two different observers on different
days.

2.4. Statistical analyses and data presentation

A statistical methodology to track change from repeated field
surveys has been developed for single species and species compos-
ites by Cunningham and Olsen (2009). This analysis is based on
methods used for abundance data in the United Kingdom
(Buckland et al., 2005; Fewster et al., 2000). The method provides
a statistical framework for addressing specific questions relating
to the estimation of long-term trends in bird populations. It dem-
onstrates how data resulting from monitoring of permanent sites
can be effectively used to develop strong inferences about possible
changes in birds over a long period. It provides a powerful frame-
work for estimating long-term trends as well as quantifying uncer-
tainty associated with trends. Furthermore, by identifying change
points, it provides valuable information on adverse, and con-
versely, favourable years.

For our data analyses, we pooled all observations at 66 field
sites in a given year to compute a reporting rate (sensu Cunning-
ham and Olsen, 2009). For each species, the reporting rate was
calculated as the proportion of sites (expressed as a %) where
there was positive evidence (observed at least once) of the spe-
cies; we then computed the reporting rate for each of the eight
survey years of our study. Using a linear logistic modelling
framework, we then fitted regression splines to compute a trend
line to our time series data for each species. With regression
splines, polynomials are fitted to segments of the data, where
the segments are separated by a sequence of user-defined
‘knots’. The piecewise polynomials are belted together at these
‘knots’. The method of fitting used was a weighted least-squares
for over-dispersed proportions. For inference, the repeat mea-
sures structure of the data was preserved by using a bootstrap
method to obtain approximate confidence intervals of smooth
curves. Further details of statistical procedures are provided in
Cunningham and Olsen (2009).

We present trend lines graphically for individual species. We
show five features: (i) the actual pattern in reporting rate is
plotted over time dotted line (——) with observations marked
as x, (ii) the ‘smooth fit’, obtained by fitting a regression spline
and shown as a dashed line - - - -, (iii) the 5th and 95th percen-
tiles, based on 500 bootstrap samples, represented by thin dot-
ted lines, (iv) a linear fit shown as a straight line; if
statistically significant (in the lower or upper 5th percentiles)
it was depicted as a bold, thick line, and (v) ‘significant’ change
points indicated by open dots (s), marking a slowing in the rate
of change or deceleration, and solid dots (d), marking an
increase in rate of change or acceleration.

3. Results

We recorded 116 species of birds in our study area between
1998 and 2009. We modelled long-term temporal trends for 76
bird species for which we had sufficient field data for detailed anal-

ysis; that was, an overall reporting rate >1% (see Appendix B). We
provide a description of a composite measure of species diversity
for the 76 species analysed. We discuss, in detail, the longitudinal
profiles for 14 of the 76 species which exhibited a linear increase, a
linear decrease, or no significant linear trend. These 14 taxa that
were of conservation concern and/or species of general manage-
ment interest.

3.1. Overall species richness

Our data revealed an increase in the expected (mean) number of
species per site from 9.3 in 1998 to approximately 15 in 2009
(Fig. 3).

3.2. Summary patterns of response

We present time series plots for all 76 bird species with a
reporting rate of >1% (see Appendix B). Of these, we found that
40 species exhibited no significant linear change in reporting rate
between 1998 and 2009 (Table 1). Thirty-two species had a posi-
tive slope and the remaining four had a negative slope
(corresponding to a temporal decline in reporting rate) (Table 1).
We also show estimates of ‘log odds ratio’ in Table 1, which is a
measure of change in the mean reporting rate in 2009 relative to
the mean reporting rate in 1998.

3.3. Increasers

Six of the seven species that we selected to demonstrate evi-
dence of a significant positive temporal increase in reporting rate
(see Fig. 4) were bird taxa which various authors (see Appendix
A) have considered to be of conservation concern. These were the
Brown Treecreeper (Climacteris erythrops), Jacky Winter (Microeca
fascinans (leucophaea), Rufous Whistler (Pachycephala rufiventris),

Table 1 (continued)

Bird species Significant trend Linear slope Log odds ratio

Slope Std. dev. Ratio Std. dev.

Willie Wagtail �0.021 0.0291 0.136 0.3513
Wood Duck Increase 0.154 0.0811 2.932 3.3408
Yellow-faced Honeyeater Increase 0.065 0.0236 2.156 1.6953
Yellow-rumped Thornbill Increase 0.092 0.0274 1.915 1.3201

Fig. 3. Trends in the expected number of species of birds per site.
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Fig. 4. Temporal trend patterns for selected temperate woodland birds for which data analysis indicate a significant linear increase (see Table 1) in reporting rates between
1998 and 2009: A. Brown Treecreeper. B. Jacky Winter. C. Rufous Whistler. D. White-winged Triller. E. Buff-rumped Thornbill. F. Rufous Songlark. G. Noisy Miner. Features
shown are: (i) the observed reporting rate plotted over time (marked as x and joined by dotted line (——)), (ii) the ‘smooth fit’, obtained by fitting a regression spline and
shown as a dashed line - - - -, (iii) the 5th and 95th percentiles, represented by thin dotted lines, (iv) a linear fit shown as a straight line; if statistically significant (in the lower
or upper 5th percentiles) it was depicted as a bold, thick line, and (v) ‘significant’ change points.
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White-winged Triller (Lalage seurii), Buff-rumped Thornbill
(Acanthiza lineata), and Rufous Songlark (Cincloramphus mathewsi)
(Fig. 4). We note there was little difference in the overall reporting
rates of bird species of current conservation concern and those not
so classified. The Brown Treecreeper and Rufous Whistler exhibited
a monotonic increase across years (Fig. 4a and c) whereas the
reporting rates for the Rufous Songlark and White-winged
Triller were characterized by marked inter-year variability
(Fig. 4d and f). Notably, we found that reporting rates for the hy-
per-aggressive native honeyeater, the Noisy Miner (Manorina mel-
anocephala), also increased over time.

3.4. Decliners

We found evidence of a significant linear decline in four species
and we show trend patterns for them in Fig. 5. Of these, two were
exotic – the Common Starling (Sturnus vulgaris) and the House
Sparrow (Passer domesticus), and two were native bird taxa (the
Black-faced Cuckoo-Shrike (Coracina novaehollandiae) and
Sulphur-crested Cockatoo (Cacatua galerita). The House Sparrow
exhibited a general monotonic decline (Fig. 4b) which contrasted
with marked inter-annual variability in the Black-faced Cuckoo-
shrike.

3.5. No change

Approximately half the 76 species of birds exhibited no
significant linear trend patterns (Table 1, Appendix B). We pres-
ent the longitudinal profiles for three species: the Crested
Shrike-tit (Falcunculus frontatus), Restless Flycatcher (Myiagra
inquieta), and Black-chinned Honeyeater (Melithreptus gularis);
species which are often considered to be of conservation con-
cern. Our data for the Crested Shrike-tit suggest that it is declin-
ing, but the linear trend was not statistically significant
(Fig. 5a). The longitudinal profile for the Black-chinned Honey-
eater was characterized by marked between-year variation with
a steep decline in reporting rate since 2005 (Fig. 5b), although
the linear slope of the trend line was not significantly different
from zero (Table 1). We found that the Restless Flycatcher also
exhibited marked variation in reporting rates between survey
years, the species increased in 2007 and 2009 from a low of
�10% in 2003 (Fig. 6c).

3.6. Links to life history attributes

As outlined above, our analyses revealed very few declining
species and a large number exhibiting increasing temporal trends
in reporting rates. This precluded formal analyses of life history
associations with long-term trend patterns. However, a qualitative
assessment indicated that there were no clear similarities in body
size, diet, movement pattern, foraging guild or other attributes
among the Common Starling, House Sparrow, Sulphur-crested
Cockatoo and Black-faced Cuckoo-shrike. Similarly, we could find
no obvious life history attributes common to the species showing
evidence of a long-term increase in reporting rates. This extensive
list of increaser species (Table 1) included residents and migrants,
large and small-bodied birds, woodland specialists, and generalists.
In addition, birds with a range of different diets and from a range of
foraging guilds were represented among those taxa characterized
by significant positive increases in reporting rates (Table 1). We
also note that in almost every case where a particular type of bird
exhibited a significant positive increase in reporting rate, there was
a taxonomically or functionally similar species for which there was
no significant temporal trend between 1998 and 2009 (see Table 1,
Appendix B). For example, both the significant increaser group and
the no change group included small and large-bodied birds, resi-
dents and migrants, woodland specialist and more generalist
species, and gramnivores, insectivores and nectarivores.

4. Discussion

The collection and analysis of high quality longitudinal data is a
critical part of many aspects of ecology, conservation biology and
natural resource management (Kruuk and Hill, 2008; Likens,
1989; Lindenmayer and Likens, 2010; Lovett et al., 2007). Such
data are particularly critical in guiding effective, evidence-based
biodiversity conservation actions (Sutherland et al., 2004), includ-
ing those in agricultural zones around the world where numerous
authors have suggested that many elements of the biota may be
declining (Attwood et al., 2009; Benton et al., 2003; Brown,
2008; Donald and Evans, 2006; Fischer et al., 2008; Kerr and
Deguise, 2004; Millennium Ecosystem Assessment, 2005).

We have reported an analysis of longitudinal data for woodland
birds in the South West Slopes bioregion of New South Wales, one
of the most heavily disturbed agricultural landscapes in Australia.
The key findings of our analyses were: (1) A substantial number of
bird species exhibiting a significant positive linear increase in
reporting rate, including several of conservation concern, despite
the series of below-average rainfall years. (2) Very few bird species
exhibiting significant negative linear decreases in reporting rate.
And (3) No apparent links between life history attributes and the
longitudinal profiles of increasing or decreasing bird species.

4.1. Patterns of temporal change

An unexpected finding from our study was that many more spe-
cies exhibited increasing reporting rates than decreasing reporting
rates (32 cf 4 species) (Table 1, Appendix B). A number of the spe-
cies expected to show declines actually exhibited the opposite
trend pattern, including several woodland birds which have often
been considered to be of conservation concern (see Appendix A).
Examples include the Brown Treecreeper, Jacky Winter, Rufous
Whistler, and the White-winged Triller (Fig. 4), some of which have
been found to be declining elsewhere in the temperate woodland
belt of Australia (e.g. Ford et al., 2009).

Two of the birds with a decreasing reporting rate in our study
were the exotic House Sparrow and the Common Starling. This
decline is a positive conservation outcome in Australia. It is

Fig. 4 (continued)

436 D.B. Lindenmayer, R.B. Cunningham / Biological Conservation 144 (2011) 430–440

189



Author's personal copy

notable, however, that both the House Sparrow and the Common
Starling have declined in other areas including the United Kingdom
(Freeman et al., 2008; Vincent, 2005). Many reasons have been pro-
posed for these declines ranging from a lack of food for these spe-
cies to the increased use of pesticides as part of agricultural
intensification.

Our data show a number of interesting parallels with those of
other studies in temperate woodlands in southern Australia (e.g.
the Australian Capital Territory and central New South Wales)
where longitudinal datasets have revealed an increase in the
reporting rates of a number of woodland birds (Bounds et al.,
2010; Cunningham and Rowell, 2006; Reid and Cunningham,
2008). However, our data contrast markedly with recent findings
on bird populations in other regions such as northern Victoria
(Mac Nally et al., 2009) and north-eastern New South Wales (Ford
et al., 2009). This suggests that there may be considerable inter-re-
gional differences in changes in bird populations.

Substantial inter-year variability in bird reporting rates was evi-
dent in our data. However, we did not find evidence of a systematic

decline or synchrony in a decrease in a large number of the species
in the bird assemblage. Our analysis spanned a number of years
characterized by markedly lower than average rainfall (see
Fig. 2), which might be expected to reduce bird populations (e.g.
Barea and Watson, 2007; Maron et al., 2005; Newton, 1998; Recher
et al., 1996). However, this was not the case; a ‘‘good” year for one
species was not necessarily a ‘‘good” year for all taxa. Such effects
were prominent both for some migratory species (e.g. White-
winged Triller) (Fig. 4) as well as some resident species (Superb
Fairy-Wren; Appendix B) suggesting inter-annual variations in
environmental conditions may affect not only movement patterns
but other factors like breeding success (see also Selwood et al.,
2008). While it was not explicitly tested in this study, it is interest-
ing to note that in years when rainfall was low in the study region
(e.g. 2006; see Fig. 2), it was �200 mm lower in regions to the
north and west of the study area. As an example, in October
2006, rainfall was zero in Temora (Bureau of Meteorology,
2010b), approximately 100 km to the north west of our study area.
Potentially, the South West Slopes bioregion, being a relatively

Fig. 5. Temporal trend patterns for selected bird species for which data analysis indicate a significant linear decrease (see Table 1) in reporting rate between 1998 and 2009:
A. Common Starling. B. House Sparrow. C. Black-faced Cuckoo-shrike. D. Sulphur-crested Cockatoo. The lines on each graph are the same as for Fig. 4.
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high rainfall region, may be acting as a regional refugium for some
species of birds from the more arid surrounds. Indeed, in 2006 we

recorded unusual influxes of birds such as the Crimson Chat (Epthi-
anura tricolor) and the White-browed Woodswallow (Artamus
superciliosus). Such movements are well documented in Europe
for species such as Bohemian Waxwing (Bombycilla garrullus) and
Northern Bullfinch (Pyrrhula pyrrhula pyrrhula), and periodic occur-
rences in western Europe due to food shortages in the more usual
parts of their range (Lees and Gilroy, 2009). If such a phenomenon
is occurring with the South West Slopes bioregion, this greatly in-
creases the importance of this area from a regional bird conserva-
tion perspective.

There will not be one simple ecological explanation or set of
explanations for observed trend patterns in bird populations that
can be applied generically across temperate woodland ecosystems
in eastern Australia. This is borne out by three key observations:
(1) Marked inter-specific differences in inter-annual variability
and hence little evidence of systematic cross-species responses to
environmental conditions such as wet and dry years (Appendix B).
(2) Similarities in longitudinal trend patterns among studies in
some regions in south-eastern Australia but marked differences in
results between others. And (3) An absence of apparent associations
between longitudinal trend patterns and life history attributes,
including a lack of congruence between the findings of our study
and previous forecasts by other workers of bird species likely to de-
cline or likely to increase in temperate woodlands (see below and
Appendix A). In the specific case of our study area, it is not possible
to determine the ecological mechanisms underlying the longitudi-
nal trend patterns that we have quantified. However, we note that:
(1) there has been no major changes in grazing intensity of agricul-
tural practice over the past 12 years, and, (2) there is no obvious rea-
son for the low reporting rates at the start of the study; the same
protocols, and the same observers have been a consistent part of
the survey effort since the inception of the project (see Section 2).
In addition, while it is true that there have been major revegetation
programs as well as an expansion of areas of Radiata Pine (Pinus rad-
iata) plantation outside our study region (see Lindenmayer et al.,
2010), it is not possible to determine if these may have influenced
the results we obtained.

4.2. Paucity of links with bird life history attributes

We found no systematic evidence that particular sets of func-
tional groups of species exhibited consistent positive or negative
trends. The 32 species showing evidence of linear increases encom-
passed a wide range of kinds of taxa including small and large-bod-
ied birds, resident and migrants, woodland specialist and more
generalist species, and granivores, insectivores and nectarivores.
Further, there were many taxonomically or functionally similari-
ties between those species for which there was no significant lin-
ear trend between 1998 and 2009 and those taxa which
increased during the same period. Notably, the study of birds in
northern Victoria by Mac Nally et al. (2009) also found no evidence
for systematic changes in particular sets or functional groups of
birds. Rather, they found that all categories of birds (guilds based
on foraging substrate; diet; nest site; relative mobility; geograph-
ical distributions) were affected similarly by drought.

4.3. Concluding comments

Based on our data, it appears unlikely that there is catastrophic
collapse in bird populations occurring. Indeed, our findings were
not consistent with the forecasts summarized in Appendix A.
However, we acknowledge that there was insufficient information
to statistically analyse the trend patterns for 40 of the 116 species
that were ‘‘rare” (defined here as those with reporting rates of less
than 1%). Examples of rare birds considered to be of conservation
concern are the Diamond Firetail (Stagonopleura guttata),

Fig. 6. Temporal trends patterns for: A. Crested Shrike-tit. B. Black-chinned Honey-
eater. C. Restless Flycatcher. The longitudinal profiles of these species are not
statistically significant (see Table 1). The lines on each graph are the same as for Fig. 4.
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Red-capped Robin (Petroica goodenovii), Varied Sitella (Daph-
oenositta chrysoptera), and Speckled Warbler (Chthonicola sagitta-
ta). Clearly different data and analyses are required to address
conservation and management needs of rare birds (e.g. Gardner,
2004; Robinson, 2010).

The increase in reporting rate of the Noisy Miner in our study
region (Fig. 4g) is of concern. The Noisy Miner is a hyper-aggressive
native bird that has major negative impacts on other native bird
species (Grey, 2008; Maron, 2007). As our data indicate, this spe-
cies was rarely recorded in the study area when we commenced
our work but reporting rates have increased significantly since
then (see Fig. 4g). It will be important to continue tracking changes
in populations of this species and quantify whether they lead to
negative effects for other species of birds as has occurred
elsewhere in eastern Australia (Grey et al., 1998; MacDonald and
Kirkpatrick, 2003; Maron, 2007).

Finally, many of the observed changes in reporting rates were
distinctly positive and they provide hope that forecast future losses
of a large proportion of existing temperate woodland bird assem-
blages in south-eastern Australia may not be realised. This is
important because the vast majority of studies in conservation sci-
ence are overwhelmingly negative and this comes with a risk of
disenfranchising key stakeholders like landholders, policy makers
and politicians. Rather than a cause for environmental compla-
cency, building a portfolio of positive stories, might garner in-
creased political will and public support for further conservation
efforts (Swaisgood and Shepherd, 2010).
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ABSTRACT

Aim To quantify at multiple spatial scales: (1) spatial dependence in several

measures of aggregate bird biodiversity, (2) the role of native vegetation cover

in explaining variation in aggregate bird biodiversity and (3) relationships

between change over 8 years in bird diversity and changes in native vegetation.

Location South-eastern Australia.

Methods We gathered data on birds between 2002 and 2010 on 184 (2 ha)

sites nested within 46 (1000 ha) farms nested within 23 (10,000 ha) landscapes.

We statistically estimated spatial and temporal components of variation at the

landscape, farm and site scale for several composite indices of bird diversity.

Second, we modelled the relationships between aggregate bird biodiversity and

log % of native vegetation cover at each spatial scale and over time.

Results Variation in bird biodiversity at the landscape, farm and site scale

exhibited significant, intrinsic scale-specific effects. This dependence was largely

accounted for by native vegetation cover with aggregate biodiversity increasing

with increasing native vegetation cover at each spatial scale and over time.

Every doubling of % cover resulted in an increase of 3.1, 2.3 and 0.7 species

per landscape, farm and site, respectively. Similar statistically significant positive

relationship between proxy abundance and richness of species of conservation

concern and % cover of vegetation were also found. Species richness at the site

scale also was related to vegetation cover in the surrounding landscape. Over

the period of study, relationships between changes in bird biodiversity and

changes in vegetation cover were not statistically significant.

Main conclusions We used ‘diminishing returns’ response curves to model

relationships between measures of bird biodiversity and vegetation cover at all

spatial scales. Absolute gains in biodiversity per unit increase in vegetation

cover were greatest at relatively low amounts of vegetation cover. These results

can help prioritize investment strategies such as replanting native vegetation

under agri-environment schemes.

Keywords

Agri-environment schemes, bird occurrence, diminishing marginal return,

native vegetation cover, spatial dependence, spatial scale, vegetation restoration.

INTRODUCTION

The concept of scale is central to ecology and refers to the spa-

tial extent of ecological processes and the spatial interpretation

of the data (Levin, 1992; Chave, 2013). For example, a given

organism may exhibit a particular kind of response to the

environment at a specific scale, but may respond differently at

a larger or smaller scale (Allen & Hoekstra, 1992; Schneider,
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1994). We recognize a duality between the concepts of spatial

scale and spatial dependence, where spatial dependence is the

occurrence of similar values for a given entity (e.g. species

richness) in close-by locations (Koenig, 1998). This may arise

because of the similarity in environmental conditions, suitabil-

ity of habitat or because of population processes such as meta-

population dynamics among ensembles of nearby patches

(Koenig, 1998).

Despite widespread recognition of the importance of scale

in ecology (Wiens, 1989; Levin, 1992), attempts to statisti-

cally quantify effects of spatial scale have often proved diffi-

cult (Meentemeyer & Box, 1987; Mackey & Lindenmayer,

2001; Collinge, 2009; Chave, 2013). This is a major issue

from an applied perspective because there is no single ‘right’

or ‘sufficient’ scale for conservation management (Levin,

1992). Indeed, a single conservation strategy adopted at a

single spatial scale may meet only a limited number of man-

agement goals (Lindenmayer & Hobbs, 2007).

To provide novel insights into the effects of scale, here we

present results from a nested, long-term study of relation-

ships between bird biodiversity and vegetation cover at land-

scape, farm and site scales and over time. Our investigation

focussed on an agricultural region of south-eastern Australia

(Fig. 1) and addressed three broad questions.

Question 1. Are there spatial scale and temporal

effects on bird biodiversity?

We analysed composite indices of bird diversity at the land-

scape, farm and site (i.e. within-farm) scales and estimated

spatial and temporal components of variation at each of

these scales. We then examined how much variation in our
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Figure 1 The nested study design showing sites within farms (circled) and farms within landscapes at two time points (2002 and

2010). The background in grey shows the spatial coverage of forest extent in 2002 and 2010.
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indices at small scales (site and farm) could be explained by

larger (landscape) scales. At the outset of this investigation,

we postulated the existence of scale effects in bird biodiver-

sity for several reasons because of (1) likely similar values in

environmental conditions and habitat suitability in closely

located areas, and (2) colonization dynamics in closely

located habitat patches (e.g. Cooper & Walters, 2002). In

addition, key processes ranging from habitat selection to

regional population dynamics manifest at different scales

(Schneider, 1994). For example, local ecological effects such

as species-specific responses to habitat suitability may limit

species richness at the individual site scale (Morrison et al.,

2006). Conversely, movement of individuals between habitat

patches across different sites may increase species richness at

larger scales by adding particular taxa such as wide-ranging

‘resource-nomads’ (sensu Recher, 1999).

Question 2. How well does native vegetation cover

explain variation in bird biodiversity at multiple

spatial scales and over time?

Although it is well known that there are strong relationships

between bird biodiversity and vegetation cover, we were

agnostic about the form of the relationships at the com-

mencement of this investigation. Some authors have sug-

gested that efforts to increase vegetation cover will have

greatest relative effect on gains in bird biodiversity in high

cover areas (Parkes et al., 2003). Conversely, others argue the

greatest gain in species richness will be in places with inter-

mediate natural vegetation cover or low and structurally sim-

ple environments (Pardini et al., 2010; Kleijn et al., 2011).

Question 3. Does vegetation cover at larger spatial

scales account for variation in bird biodiversity at

smaller spatial scales?

Examining relationships between species richness and other

measures of bird biodiversity and vegetation cover at multi-

ple scales is important for several reasons: (1) most past

work has focused at a single scale, typically the ‘landscape

scale’ as perceived by humans (e.g. 100 sq km; Radford

et al., 2005; Maron et al., 2012). (2) Recent work by

Tscharntke et al. (2012) has suggested there may be ‘spill-

over’ effects with species richness at small scales influenced

by vegetation cover at larger scales, but this premise has yet

to be quantified. (3) Most work on relationships between

biodiversity and vegetation cover has focused on declining

areas of habitat (e.g. Brooks, 2002), but here we quantify

responses to increasing levels of vegetation cover arising from

natural regeneration and revegetation. We postulated that

there would be a strong positive relationship between bird

biodiversity and the amount of vegetation cover, consistent

with the findings of previous studies that have quantified the

effects of the amount of habitat on species richness (Swift &

Hannon, 2010; Maron et al., 2012; Tscharntke et al., 2012).

We also anticipated that there would be temporal increases

in bird biodiversity at sites, on farms and in landscapes

because the amount of native vegetation cover in our study

region has increased over the past 10–20 years through natu-

ral regeneration and revegetation programmes.

New insights from this study have important implications

for guiding major management activities such as restoration

programmes (Benayas et al., 2009). For example, the results

provide guidance on the spatial scale at which efforts to

increase the amount of native vegetation cover might yield

the best gains for biodiversity (Tscharntke et al., 2012). Our

findings also will provide an indication of whether efforts to

restore vegetation cover are likely to have a direct effect on

species gain within landscapes as distinct from localized

effects observed across sites.

MATERIALS AND METHODS

Study area

Our study was conducted in a 150 km 9 120 km area of the

south-west Slopes of New South Wales, south-eastern

Australia (Fig. 1). The predominant form of native vegetation

was temperate eucalypt woodland (sensu Lindenmayer et al.,

2010a,b). The region was ideal for study because (1) there was

a wide range in spatial cover of native vegetation (from 3% to

35%) and (2) native vegetation cover on some farms and in

some landscapes has been increasing rapidly over the past two

decades through revegetation (Lindenmayer et al., 2010a,b)

and natural regeneration (Geddes et al., 2011). These features

can be seen as satellite-derived forest extent (Fig. 1).

Study design

We gathered bird data from 2002 to 2010 on 184 sites (each

of 2 ha). Four sites were nested within each of 46 farms

(each of 1000 ha) that were wheat (Triticum spp.) or canola

(Brassica napus) cropping properties, or sheep (Ovis ovis)

and cattle (Bos taurus) grazing enterprises. We then nested

two farms within each of 23 landscapes (defined as a rela-

tively homogenous circular area covering 10,000 ha) (Fig. 1).

The overall size of our investigation was large and character-

ized by many replicates of landscapes (n = 23), farms

(n = 46) and sites (n = 184). This, in many ways, statistically

obviates the need for high-intensity sampling throughout

individual farm and landscape units. Cunningham et al.

(2007) provide further details of the experimental design.

Bird surveys

Our study region supports more than 170 bird species (see

Table S1 in Supporting Information). Over half of these spe-

cies are woodland dependent (Silcocks et al., 2005). These

include more than 20 species of conservation concern (sensu

Reid, 1999; Montague-Drake et al., 2009) (see Table S1). The

bird community in the study region includes a range of

native ‘generalist’ species that occur in heavily cleared
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paddocks and cultivated areas (e.g. the Brown Songlark,

Cincloramphus cruralis). Only four species are exotic, of

which the House Sparrow (Passer domesticus) and Common

Starling (Sturnus vulgaris) have been declining significantly

over the past decade (Lindenmayer & Cunningham, 2011).

We surveyed birds on the 184 sites in spring 2002, 2004,

2005, 2007, 2009 and 2010. Our bird counting protocols

entailed repeated 5-min point interval counts at the 0, 100

and 200 m points along the permanent transect at each site.

In each survey year, all sites were surveyed by two different

observers on different days. We completed counts between

sunrise and mid-morning using protocols identical to those

in our other long-term major studies in temperate eucalypt

woodlands in south-eastern Australia (Montague-Drake

et al., 2009).

Response variables

Combining information across species can provide useful

measures of aggregate biodiversity to assess scale aspects and

relationships between diversity and vegetation cover. Com-

posite indices analysed and presented were the overall num-

ber of species (R), the number of species of conservation

concern (C) and a proxy measure of relative abundance (A).

Ecologists have dedicated considerable effort in analysing

and predicting richness and relative abundance (Rosenzweig,

1995; Gaston & Spicer, 2004), and land managers use rich-

ness frequently in developing strategies for managing natural

resources, including biodiversity.

Our species richness measures, R and C, were the total

number of species and the number of species of conservation

concern, recorded at a site, farm or in a landscape, respec-

tively. Our measure of relative abundance (A) (Cunningham

& Olsen, 2009) was the mean of odds ratios for 49 species

with mean reporting rates > 5% and < 95%. At the site level,

we excluded data on several species because of low mean

reporting rates, giving 35 species. Thus, A ¼ 1
49

P49

1
log 100 p

1�p

where interpolated reporting rate at 2002 and 2010. Low val-

ues for the index of relative abundance corresponded to low

abundance and high values corresponded to high average

abundance.

Vegetation cover as a potential explanatory variable

We considered four measures of vegetation cover: the total

(%) amount of woody vegetation cover, the number of

native vegetation patches, the average patch area (ha) and

the standard deviation of patch area. We calculated each of

these measures at the site (within 500 m of the centre of a

site), farm (1000 ha) and landscape (10,000 ha) scales using

grids of annual forest extent and change between 2002 and

2010 derived from satellite imagery (Furby, 2002). Grid reso-

lution was 25 m 9 25 m and vegetation cover was allocated

to grid cells where the minimum canopy cover was 20% over

a minimum area of 0.2 ha with potential height at least 2 m.

Statistical analyses

Our objective in the first part of the analysis was to obtain a

‘best’ estimate of site, farm and landscape-scale bird species

richness (R and C) and our index of bird abundance (A) at

two time points – 2002 and 2010. The second part of our

analysis was to develop models of relationships between our

measures of aggregate bird biodiversity and native vegetation

cover at three spatial scales as well as over time. We describe

below the analysis for landscape-scale species richness (R).

We then repeated this process with farms and sites replacing

landscapes, separately, and with the other biodiversity

measures, C and A, replacing species richness.

Interpolation of estimates of landscape bird richness in 2002

and 2010

Considering all survey years simultaneously, we fitted a mul-

tiple regression model with species richness as the response

variable with the fixed effects being the terms ‘Landscape’,

‘Year’ (as a linear effect) and the interaction term

Landscape 9 Year. This model facilitated prediction of

‘smoothed’ species richness values at each landscape for each

year, together with estimates of the variance of the predicted

values. We completed a similar process for relative abun-

dance, where the predicted odds ratios for each of the 49

species were obtained for the years 2002 and 2010 by linear

logistic regression, where the response variable was presence/

absence of a given bird species and the fixed effects were

Landscape, Year and Landscape 9 Year interaction terms.

Modelling the relationship between bird biodiversity and

vegetation cover

For simplicity, we consider a statistical model for landscape-

scale bird species richness. Our response variable species

richness then varied at three levels: between-landscape,

between-year and between-year within-landscape. The candi-

date explanatory variables representing vegetation cover (pri-

marily here the log of % vegetation covers) also varied at

these levels.

We recognized in our statistical analysis that repeat obser-

vations of bird species richness within a landscape might be

more homogeneous than observations between landscapes.

That is, we would expect some within-landscape correlation

between the repeat species richness values. This suggested the

factor ‘Landscape’ should therefore be treated as a random

effect in our model. For similar reasons, ‘Year’ was included

as a random effect.

If we regard Landscape (l) and Year (y) as random effects

and vegetation cover as a fixed effect, we have:

Yij ¼ lþ li þ yj þ bXij þ eij

l = grand mean; b = the regression coefficient for the

explanatory variable Xij, the log vegetation cover. Assume li,
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i = 1, ���,23, independent Nð0; r2
l Þ, yj, j = 1,2 independent

Nð0; r2
yÞ and ɛij independent Nð0; r2

e Þ, where r2
l , r2

y , r2
e are

known as variance components. Yij denotes bird richness on

the ith landscape in the jth year.

The above model fits within the general framework of gen-

eral linear mixed models (Galwey, 2006). Restricted maxi-

mum likelihood was used to estimate variance components

and weighted least squares for estimating fixed effects. We

assessed statistical significance of effects by calculating

adjusted Wald statistics (Kenward & Rogers, 1997). We

based extrinsic weights on the standard errors of the pre-

dicted values of species richness in 2002 and 2010 obtained

from the previous analysis. We used general model checking

procedures to identify aberrant data and to check model

assumptions.

The variance of an observation of richness in a landscape

in a given year was:

VarðYijkÞ ¼ r2
l þ r2

y þ r2
e

A measure of dependence between repeat observations in

the same landscape was the within-landscape correlation viz:

q ¼ r2
l

r2
l þ r2

y þ re

For our study, spatial variance components provided a

measure of variation of observations at a given scale and

therefore provided statistics for calculating spatial depen-

dence (and hence scale effects).

Our models for farm and site bird species richness

included additional, larger spatial random terms and hence

components of variance (i.e. landscape for the farm-level

analysis and farm and landscape for the site-level analysis;

see Tables S1–S5). Therefore, models for farm and site bird

species richness were mathematically more complicated than

those for landscape-scale analysis outlined above.

RESULTS

General findings

We recorded 171 species of birds in our study, including

21 species of conservation concern (Table S1). We then

considered four measures of vegetation cover and their rela-

tionships with overall bird species richness and the richness

of bird species of conservation concern. We found strong

effects for one of these measures – log % of native vegetation

cover – with only very limited additional information from

analysing the other three (i.e. number of patches, average

patch area, the standard deviation of patch area). Therefore,

we present findings only for log % vegetation cover.

Between 2002 and 2010, the geometric mean of % vegeta-

tion cover increased from 3.6 to 4.2 at the landscape scale,

3.1–3.8 at the farm scale and 1.9–2.8 at the site scale. During

this time, species richness (R) increased by 3.2 species (from

38.5 species) at the landscape scale (P = 0.07), 2.4 species

(from 27.5 species) at the farm scale (P = 0.008) and 0.5

species (from 13 species) at the site scale (P = 0.15). Rich-

ness of species of conservation concern (C) increased by 0.13

(from 3.1), 0.04 (from 2.1) and 0.2 (from 1.2) for land-

scapes, farms and sites, respectively. The abundance index

(A) changed from 0.35, from 1.2 (this is equivalent to an

increase in median reporting rate from 4.5 to 5.2), from 0.03

(from 0.13) and �0.2 (from �2.6), for landscapes, farms

and sites, respectively.

In the remainder of the Results section, we summarize our

findings, first as a decomposition of total variation in bird

biodiversity (R, C and A) into the relevant random compo-

nents (ANOVA) and secondly, the amount of variation in bird

biodiversity explained by log % of native vegetation cover

for each component.

Response 1 (a): Species richness per landscape

At the landscape scale, 44% of the variance of a single obser-

vation of species richness was attributable to landscape scale

variation and 4% was attributable to year to year variation

(Table 1). Furthermore, 83% of the landscape component of

variance and 55% of the year component of variance could

be explained by log % vegetation cover (Table 1). The intra-

landscape correlation between-landscape richness values was

reduced from 0.44 to 0.12, confirming that much of the het-

erogeneity in landscape species richness could be explained

by log % vegetation cover.

We summarize the between-landscape and within-

landscape relationships between species richness and vegeta-

tion cover in Table 2 and Fig. 2. The between-landscape slope

Table 1 Variance components and the amount of variation explained by log % of native vegetation cover for three measures of

aggregate biodiversity at the landscape scale: overall number of species (R), the number of species of conservation concern (C) and an

index of relative abundance (A).

Random term
Component

% of total for an

observation

Component after fitting

vegetation cover

% explained by

vegetation cover

Measure R C A R C A R C A R C A

Landscape 29 0.5 0.8 44 38 47 5.0 0.22 0.38 83 56 77

Year 3.8 0 0.02 4 0 1.3 1.7 0 0 55 – 100

Residual 33 0.8 0.9 50 62 52 36 0.81 0.96
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(4.5, SE = 0.96) represents the difference in the mean species

richness between two landscapes, which differ by 1 unit in log

% native vegetation cover. The within-landscape slope (�0.7,
SE = 6.7) represents, for a given landscape, the increase in the

change in species richness per unit change in difference in log

% vegetation cover between 2002 and 2010. This is the direct

effect on species richness of increasing log % native vegetation

cover by one unit within a given landscape. This is clearly not

statistically significant (P = 0.92).

The magnitude of additive gains in species richness

reduced as the absolute value of native vegetation cover

increased in a linear way (Fig. 2b). Hence, the profile of the

response was one of ‘diminishing marginal returns’. Convert-

ing our results to log base 2, we found that a doubling of

native vegetation cover in the 8-year period resulted in an

increase of 3.1 (95% CI: 1.7, 4.5) bird species per landscape

(Fig. 2b), and this does not depend on the % cover of

vegetation in the year 2002.

Response 1 (b): Number of bird species of

conservation concern per landscape

We found that 38% of the variance of an individual observa-

tion of the richness of birds of conservation concern per land-

scape was attributable to landscape scale variation and 0% was

attributable to year to year variation (Table 1). In addition, 56

% of the landscape component of variance could be explained

by native woody vegetation cover (Table 1).

Doubling of % native vegetation cover resulted in an

increase of 0.32 (95% CI: 0.10, 0.54) species of conservation

concern per landscape (Table 2; Fig. 2c); the mean number of

species of conservation concern per landscape was 3.1 species.

Response 1 (c): Index of aggregate abundance per

landscape

We found that 47% of the variance of an individual observa-

tion of aggregate abundance was attributable to landscape

scale variation and 1.3% was attributable to year to year vari-

ation (Table 1). In addition, 77% of the landscape compo-

nent of variance could be explained by native woody

vegetation cover (Table 1).

Doubling of % native vegetation cover resulted in an

increase of 0.40 (95% CI: 0.13, 0.66) in the abundance index

per landscape (Table 2; Fig. 2d); the mean per landscape was

1.4, which corresponds to a median reporting rate of 5%.

Response 2: Species richness per farm

We found that 49% of the variance in an individual observa-

tion of species richness per farm could be attributed to vari-

ance between farms, 13% between landscapes and 3.9% due

to overall differences between 2002 and 2010 (Table S2). The

landscape by year variance components represents variation

in random temporal slopes between landscapes (i.e. the

tendency for temporal changes in species richness at a

farm scale to be non-constant between landscapes). This

accounted for 9.5% of the variance of an observation (i.e.

species richness per farm) (Table S2).

Vegetation cover reduced within-farm correlation in spe-

cies richness from 0.63 to 0.48. Farm scale and the landscape

scale vegetation cover, considered simultaneously, accounted

for 71% of the landscape variance, 75% of the year variance

and 34% of the between-farm (within a landscape) variance.

Only 2% of the variance in the change in species richness

between 2002 and 2010 at the landscape scale was accounted

for by farm and landscape % vegetation cover (Table S2).

These findings suggest that factors in addition to the amount

of vegetation cover are operating at the landscape scale to

affect temporal change in farm-scale species richness.

There was no evidence of strong effects on changes in spe-

cies richness resulting from the temporal change in native

vegetation cover on a farm (Fig. 3a). The between-farm

regression relationship (Table S3) indicated that every dou-

bling of native vegetation cover at the farm scale resulted in

an increase of 2.3 (95% CI: 1.3, 3.3) species of birds per

farm (Fig. 3b).

The significant overall landscape component of variance

indicated that farms within landscapes were more similar in

values for species richness than farms in different landscapes.

Response 2 (b): Number of bird species of

conservation concern per farm

The mean number of species of conservation concern at the

farm scale was 2.1 and was significantly (P = 0.008) related

to the log % vegetation cover in a farm; for every doubling

of native vegetation cover at the farm resulted in an increase

Table 2 Parameters and associated statistics for spatial and temporal relationships between bird biodiversity and log vegetation cover at

the landscape scale.

Parameter
Estimate SE P-value

Measure R C A R C A R C A

Constant 40.2 3.12 1.4 1.0 0.16 0.2

log% vegetation cover (overall) 4.5 0.46 0.57 0.96 0.16 0.2 < 0.001 0.008 0.005

log% vegetation cover (between landscapes) 4.7 0.50 0.62 0.97 0.16 0.2 < 0.001 0.006 0.003

log% vegetation cover (within landscapes) �0.7 �0.70 �0.9 6.7 0.95 1.0 0.92 0.48 0.40

R, overall number of species; C, the number of species of conservation concern; A, an index of relative abundance.
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of 0.20 (95% CI: 0.06, 0.34) species of birds of conservation

concern per farm (Fig. 3c).

Response 2 (c): Index of aggregate abundance per

farm

As with species richness, the between-farm component of

variance was the dominant component and much of this

could be accounted for by vegetation cover at the farm scale.

Doubling of % native vegetation cover resulted in an

increase of 0.35 (95% CI: 0.12, 0.57) in the abundance index

per farm (Fig. 2d); the mean per farm was 0.15, which corre-

sponds to a median reporting rate of 1.4%.

Response 3: Species richness per site

We found that 36% of the variance of an individual observa-

tion of species richness per site could be attributed to

(a) (b)

(d)(c)

Figure 2 (a) Relationships between mean bird species richness and vegetation cover for each landscape (denoted by the solid points).

The between-landscapes regression is represented by the long solid line and the average within-landscape regression by the short line

through each point. (b) Relationship between the predicted mean (and 95% CI) bird species richness per landscape and % native

vegetation cover. (c) Relationship between the predicted mean number (and 95% CI) of bird species of conservation concern per

landscape and % native vegetation cover. (d) Relationship between the predicted abundance index per landscape (and 95% CI) and %

native vegetation cover.
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variance between sites, 6% between farms, 8% between land-

scapes, 11% to random temporal slopes between landscapes,

and 0% due to overall differences between 2002 and 2010

(Table S4). Vegetation cover at the site level accounted for

less of the inherent site-to-site variation, reducing the intra-

site correlation from 0.51 to 0.45.

Decomposition of the overall relationship between species

richness and log % native vegetation cover at the site scale

into between-site and within-site regression is shown

in Fig. 4(a). At the site scale, the slope of the temporal

regression relationship for the change in species richness

between 2002 and 2010 versus change in log % vegetation

cover over the corresponding period was small (Fig. 4a).

Temporal changes in site-scale species richness were signifi-

cantly related to the changes in the amount of vegetation

cover at the landscape scale but not at the farm or site

scales (Table S4).

Every doubling of the cover of native woody vegetation

resulted in an increase of 0.65 (95% CI: 0.35, 0.94) bird

species per site (Fig. 4b; Table S5).

(a)

(c)

(b)

(d)

Figure 3 (a) Relationships between mean bird species richness and vegetation cover for each farm (denoted by the solid points). The

between-farms regression is represented by the long solid line and the average within-farm regression by the short line through each

point. (b) Relationship between the predicted mean (and 95% CI) bird species richness per farm and % native vegetation cover.

(c) Relationship between the predicted mean number (and 95% CI) of bird species of conservation concern per farm and% native

vegetation cover. (d) Relationship between the predicted abundance index per farm (and 95% CI) and % native vegetation cover.
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Response 3 (b): Number of bird species of

conservation concern per site

The mean number of species of conservation concern at the

site scale was 1.3 and was significantly (P < 0.001) related to

the log % vegetation cover in a site; for every doubling of

native vegetation cover at the site resulted in an increase of

0.26 (95% CI: 0.17, 0.34) species of birds of conservation

concern per site (Fig. 4c).

Response 3 (c): Index of aggregate abundance per

site

The results for the index of aggregate bird abundance were

similar to those for overall richness, although the evidence

for explaining abundance by vegetation cover measured at

the landscape scale was weaker and not statistically signifi-

cant. Every doubling of native vegetation cover at site

resulted in an increase of 0.19 (95% CI: 0.02, 0.37) in our

(a) (b)

(c)
(d)

Figure 4 (a) Relationships between mean bird species richness and % vegetation cover for each site (denoted by the solid points). The

between-sites regression is represented by the long solid line and the average within-sites regression by the short line through each

point. (b) Relationship between the predicted mean (and 95% CI) bird species richness per site and % native vegetation cover. (c)

Relationship between the predicted mean number (and 95% CI) of bird species of conservation concern per site and % native

vegetation cover. (d) Relationship between the predicted abundance index per site (and 95% CI) and % native vegetation cover.
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abundance index (Fig. 4d). The relationship between change

in the index of abundance and temporal change in vegetation

cover was not statistically significant.

DISCUSSION

Levin (1992, p. 1943) argued the problem of pattern and scale

is the central problem in ecology, unifying population biology

and ecosystem science, and marrying basic and applied ecology.

We have addressed three key spatial scale-related questions

using repeated measures data from a spatially nested study

design to quantify (1) scale effects for several measures of

aggregate biodiversity and, (2) relationships between biodi-

versity measures and vegetation cover at the site, farm and

landscape scales and over time (2002 and 2010). Our analy-

ses revealed the following key findings:

1. Significant patterns of spatial dependence at the land-

scape, farm and site scales.

2. High explanatory value of log % vegetation cover in

explaining observed patterns of spatial dependence in overall

species richness, on our index of abundance, and on species

richness of birds of conservation concern at all spatial scales.

3. Significant positive relationships between bird biodiversity

on a site and the log % native vegetation cover at a site, and

also the log % vegetation cover at the landscape scale.

4. Temporal changes in landscape-scale vegetation cover had

value in explaining changes in bird biodiversity at site scales.

We further discuss these and other key findings in the

remainder of this paper and then conclude with key implica-

tions of our work for vegetation restoration and bird

conservation.

Patterns of spatial dependence

At all three spatial scales, observations between repeat mea-

sures over time at a given site, farm or landscape were more

alike than observations between scales. The amount of native

vegetation cover accounted for much of this observed depen-

dence in species richness at all spatial scales (see the follow-

ing section). We also found some evidence of spatial

dependence between sites within farms and farms within

landscapes. Similarities in bird species richness on sites

within the same farm might arise due to farm-level manage-

ment practices such as levels of fertilizer or pesticide applica-

tion (Barrett, 2000; Gabriel et al., 2010). Further spatial

dependence between farms within the same landscape might

arise because of levels of productivity (Maron et al., 2012) or

cross-farm management [e.g. a hiatus in poison-baiting pro-

grammes that result in increased numbers of wide-ranging

exotic predators such as the introduced Red Fox (Vulpes vul-

pes) (Shapira et al., 2008)]. Other processes such as meta-

population dynamics and source-sink dynamics that can

influence extinction-colonization phenomena in vegetation

patches (Hanski, 1999) also might influence patterns of spa-

tial dependence (Koenig, 1998). However, detailed data on

the demography of populations of species within individual

patches (e.g. see Zanette 2000) are required to quantify

whether source-sink dynamics are operating in the ecosys-

tems that we investigated. We have not gathered such data,

nor to the best of our knowledge have others studying the

avifauna of temperate eucalypt woodlands of south-eastern

Australia.

The number of bird species on a site was related to the

amount of native vegetation cover at the landscape scale

(after having accounted for vegetation cover at the site scale).

Several factors may account for these effects, including (1)

interpatch movements, patch colonization and rescue-effects

(Hanski, 1999), (2) regional populations of species (Askins &

Philbrick, 1987) that in turn provide a source of colonists,

which then invade patches from surrounding areas and (3)

boundary conditions and edge effects (Lindenmayer et al.,

2009).

Bird biodiversity relationships with vegetation cover

We found that the ‘best’ representation of relationships

between overall species richness, the richness of birds of con-

servation concern, our index of abundance and vegetation

cover at all spatial scales was one of ‘diminishing marginal

returns’ (Figs 2b–d, 3b–d & 4b–d). That is, relationships in

which the absolute gains in species richness per unit increase

in vegetation cover were greatest at relatively low amounts of

vegetation cover (e.g. 5–10%). The increasing richness of

bird species of conservation concern with increasing vegeta-

tion cover, including at low levels of vegetation cover (see

Figs 2c, 3c & 4c) suggests that our results were not simply

due to increases in the number of generalist or exotic

species.

Given the level of inherent variability in the relationship

between species richness and the amount of native vegetation

cover, no other more complex relationship [such as other

curvilinear relationships or a ‘broken-stick’ (threshold)

model] was preferred over the simple statistical model

Y = a + b logX. Our analyses do not exclude the possibility

that more complicated models might be appropriate for bird

species richness–vegetation cover relationships, but it was

not possible to find unequivocal empirical support for so

called ‘threshold’ models (i.e. models exhibiting a discrete

breakpoint) (cf. Radford et al., 2005). Also, we do not

exclude the possibility that individual species that depend on

more extensive intact habitat may show different patterns.

Our findings were consistent with the results of other

studies that have demonstrated links between the number of

species present in a given area and the amount of ‘habitat’ in

that area (e.g. via the species–area curve; Rosenzweig, 1995;

Gaston & Spicer, 2004). Our ‘diminishing returns’ model for

the relationship between bird species richness and the %

cover of woody native vegetation is consistent with simple

equations used to describe the well-studied species–area

curve (Arrhenius, 1921; Preston, 1962; Rosenzweig, 1995).

Notably, species–area equations have been used to predict

rates of species extinction where % habitat cover has been
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used as a substitute for area – as usually defined as area of

contiguous native vegetation (e.g. an island or a patch

‘intact’ forest surrounded by a cleared non-forest matrix)

(Brooks, 2002).

Does vegetation cover at larger spatial scales

influence bird biodiversity at smaller spatial scales?

An unexpected result was that the temporal change in the

amount of vegetation cover between 2002 and 2010 at the

landscape scale had a significant effect on changes in species

richness at the site level. That is, changes in species richness

on a site between 2002 and 2010 were positively related to

temporal changes in vegetation cover at the landscape scale

(Table S5). This is an important finding as most past work

on relationships between biodiversity and vegetation cover

has focused on declining areas of habitat (e.g. Brooks, 2002),

but here we have quantified species richness and other

responses to temporal increases in vegetation cover arising

from natural regeneration and revegetation. We have not

examined the potential for time-lag effects on species loss

[e.g. extinction debts (sensu Tilman et al., 1994; Lindenmayer

and Fischer 2006)]. Such lag effects may exist in the temper-

ate eucalypt woodlands that we studied, but our data lack

the level of precision needed to detect them (if they occur).

However, we do note that the richness of species of conser-

vation concern (which may be those taxa most prone to lag

effects) exhibited significant positive relationships with the

amount of native vegetation cover.

Several factors may explain why changes in landscape-scale

vegetation cover influence farm and site-level outcomes.

These include (1) landscape context effects in which a deter-

minant of the biota in patches is the amount and condition

of the vegetation surrounding those patches (Lindenmayer

et al., 2008), (2) regional species pool effects (Askins & Phil-

brick, 1987) in which organism occurrence within individual

patches is influenced by overall population and assemblage

composition at a regional scale, and (3) dispersal and associ-

ated processes such as meta-population dynamics (Hanski,

1999) that, for some species of birds, may operate at land-

scape scales but, in turn, influence occurrence (and patterns

of spatial dependence) at smaller farm and site scales.

Practical implications

An important conservation question in agricultural areas

such as those targeted under agri-environment schemes is:

Will the greatest biodiversity gains from investments in restora-

tion occur at high, intermediate or low levels of remnant vege-

tation cover? Our analyses revealed the ‘best model’ was a

curve of ‘diminishing returns’. Hence, the highest relative

gains in biodiversity will be at lower levels of native vegeta-

tion cover (e.g. when increasing vegetation cover from 5% to

10%). Doubling the amount of native vegetation is also,

from a practical perspective (given other land use demands

such as cropping and domestic livestock grazing), easier to

achieve at lower levels of vegetation cover than at higher lev-

els (e.g. from 15% to 30%).

A potential issue with a diminishing marginal returns

curve for species richness could be that bird species of con-

servation concern might be recruited only at high levels of

vegetation cover in a site, farm or landscape. However, our

analyses clearly showed that the response curves for the rich-

ness of species of conservation concern were similar to those

for overall species richness. Indeed, we showed that absolute

gains in richness for birds of conservation concern per unit

increase in vegetation cover were greatest at relatively low

amounts of vegetation cover (Figs 2c, 3c & 4c). This finding

is congruent with other investigations in our study region

indicating species of conservation concern often occupy

replanted areas and stands of natural regrowth (Lindenma-

yer et al., 2012) – which are typically the most prevalent

form of vegetation cover in extensively cleared farms and

landscapes (Cunningham et al., 2007). We do, however, note

that some species of conservation concern may colonize a

site or a farm only if key nesting and/or foraging resources

are available, and this may be associated not only with the

amount of vegetation cover but also the type and quality of

that cover.

New insights from this study do not discount the conser-

vation value of improving the condition of existing areas of

remnant native vegetation (Lindenmayer et al., 2012) nor do

they undermine the importance of protecting high-quality

stands of temperate eucalypt woodland (Montague-Drake

et al., 2009). Rather, we reiterate that if a management objec-

tive is to increase overall bird species richness or the richness

of bird species of conservation concern, then investment

strategies aimed at achieving this would be best targeted at

landscapes with comparatively low vegetation cover levels.

Although some parts of our study region support relatively

limited vegetation cover (e.g. < 4% of the landscape), we

found no direct evidence of areas being so heavily cleared

they were beyond remediation (e.g. ‘triage landscapes’;

Hobbs et al., 2003). Rather, the diminishing returns response

curves suggest that revegetation programmes, even within

areas of low native vegetation cover (e.g. 3–5%), can have

significant positive benefits for increasing bird species

richness.

We found that the temporal change in species richness at

the site scale was related to the change in vegetation cover

at the landscape scale as well as at the site scale. Restora-

tion programmes in a given landscape will therefore result

not only in increased bird species richness in that land-

scape, but also on sites and farms within that landscape. In

addition, landscape-scale restoration may result in increased

species richness on farms and sites where no restoration

has taken place. A significant implication is that species

richness benefits accrue from multiple land managers work-

ing collectively at the landscape level. This, in turn, high-

lights the benefits for biodiversity conservation that might

arise from coordinated revegetation programmes at large

spatial scales.
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Abstract. Scale is a key concept in ecology, but the statistically based quantification of
scale effects has often proved difficult. This is exemplified by the challenges of quantifying
relationships between biodiversity and vegetation cover at different spatial scales to guide
restoration and conservation efforts in agricultural environments. We used data from 2002 to
2010 on 184 sites (viz., site scale) nested within 46 farms (the farm scale), nested within 23
landscapes (the landscape scale). We found cross-sectional relationships with the amount of
vegetation cover that were typically positive for woodland birds and negative for open-country
birds. However, for some species, relationships differed between spatial scales, suggesting
differences in nesting and foraging requirements. There was a 3.5% increase in the amount of
native vegetation cover in our study region between 2002 and 2010, and our analyses revealed
that some open country species responded negatively to these temporal changes, typically at
the farm and/or site scale, but not the landscape scale. Species generally exhibited stronger
cross-sectional relationships with the amount of vegetation cover than relationships between
changes in occupancy and temporal changes in vegetation cover. This unexpected result can be
attributed to differences in habitat use by birds of existing vegetation cover (typically old-
growth woodland) vs. plantings and natural regeneration, which are the main contributors to
temporal increases in vegetation cover. By taking a multi-scaled empirical approach, we have
identified species-specific, scale-dependent responses to vegetation cover. These findings are of
considerable practical importance for understanding which species will respond to different
scales of protection of existing areas of native vegetation, efforts to increase the amount of
native vegetation over time, and both approaches together.

Key words: agricultural environments; southeastern Australia; spatial scale; temporal effects;
vegetation cover; woodland birds.

INTRODUCTION

The vast majority of studies of biodiversity (including

those of birds) in agricultural environments have been

cross-sectional investigations, with longitudinal studies

being relatively uncommon (Likens 1989, Muller et al.

2011). In many agricultural environments over the past

10–20 years, there have been significant changes in the

amount of native vegetation cover at multiple spatial

scales (Geddes et al. 2011). Positive temporal changes in

some agricultural environments are the result of natural

regeneration and concerted woodland replanting pro-

grams (Munro and Lindenmayer 2011).

The defining characteristic of a longitudinal study is

that observations of the same population of units are

observed over a period of time, sometimes lasting many

years. These studies are in contrast to simple cross-

sectional studies, in which outcomes are considered as a

single (or average) snapshot in time. The benefit of a

longitudinal study is that it is possible to study

relationships in changes taking place in a target

population. Thus, longitudinal data (Diggle et al.

1996) allow us to distinguish cross-sectional relation-

ships among a population of observational units from

temporal relationships from within these units. By virtue

of its scope, a longitudinal study is more likely to

provide insights into cause-and-effect relationships than

a cross-sectional study (Likens 1989).

The concept of spatial scale is central to ecology and

refers to the spatial extent of ecological processes and

the spatial interpretation of the data (Levin 1992, Chave

2013). Quantifying scale effects can be difficult, and this

can limit our understanding of species–habitat relation-

ships. Differences in autecology such as home range,

body size, nesting and foraging requirements among

different species, suggest that different taxa are likely to

respond to the environment at different spatial scales

Manuscript received 13 May 2013; revised 5 December 2013;
accepted 23 December 2013; final version received 16 January
2014. Corresponding Editor: D. Brunton.
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(Schneider 1994, Carigan and Villard 2002, Chave 2013).

Similarly, the same species also may exhibit a particular

kind of response to the environment at a specific spatial

scale, but might respond differently at a larger or smaller

spatial scale (Forman 1964, Diamond 1973, Allen and

Hoekstra 1992, Date et al. 1996). For instance, the

spatial scale of a suitable nesting site (e.g., within an

individual tree hollow) may be different to the spatial

scale of foraging or intraspecific competition within a

patch. Other key processes may act at yet other scales,

such as the regional-level fluctuations in the abundance

of a species (Askins et al. 1987), the dispersal of

individuals between patches of habitat in a meta-

population (Koenig 1998, Hanski 1999), or the migra-

tion of individuals across or between continents (e.g.,

Guerra and Reppert 2013). To gain insights into such

processes, it is important to collect, analyze, and

interpret longitudinal data measured at different scales.

In this paper, we statistically examined scale effects on

both cross-sectional and temporal relationships through

a case study of bird occupancy in the temperate

woodlands of southeastern Australia, a region that has

been heavily modified by agriculture and livestock

grazing (Lindenmayer et al. 2010a). We explored

relationships between occupancy by individual species

of birds and the amount of native vegetation cover at a

snapshot in time as well as changes over time in these

variables (i.e., temporal effects). Our data were repeated

surveys of birds and vegetation cover from 2002 to 2010

on 184 sites (viz., site scale) nested within 46 farms (farm

scale) nested within 23 landscapes (landscape scale). We

recognized that for our key response and covariate, we

could compute bird occupancy and concomitantly

derive the percentage of native vegetation cover at each

scale, and so these measures and statistics resulting from

our analysis have compatible meaning across different

scales. This facilitated, for a selection of individual

species of birds, use of our data to examine and compare

scale effects under three interrelated research themes:

(Theme 1) Cross-sectional relationships. (Theme 2)

Temporal relationships. (Theme 3) Contrasts between

cross-sectional and temporal relationships. We outline

these themes as follows.

Theme 1. Cross-sectional relationships between bird

occupancy and the amount of native vegetation cover

In Theme 1, we estimated cross-sectional relationships

between bird occupancy and satellite-derived measures

of native vegetation cover at the landscape, farm, and

site scales. Spatial scale issues have not been examined in

detail in many agricultural landscapes (Tscharntke et al.

2012), and most past cross-sectional work on bird

responses to native vegetation cover has been focused at

a single scale (e.g., the ‘‘landscape scale,’’ as perceived by

humans (e.g., 100 km2 [Radford et al. 2005, Maron et al.

2012a]). Several investigations have established strong

relationships between the number of species that inhabit

a given area and the amount of ‘‘habitat’’ in that area

(Andren 1994, Betts et al. 2010, Swift and Hannon 2010,

Storch et al. 2012). In addition, several studies have

documented relationships between occupancy by an

individual species and the amount of ‘‘habitat’’ in a

given area (Homan et al. 2004, Radford et al. 2005). We

recognized that what constitutes suitable habitat varies

between different species (Hall et al. 1997), and for this

study, we postulated that woodland-dependent bird

species would be more likely to occur on sites, farms,

and in landscapes with more native vegetation cover,

and conversely, open-country species (i.e., those typi-

cally associated with paddocks and cleared pasture-

lands) would be less likely to occur in such areas.

As part of Theme 1, we also sought to provide

empirical support for describing taxa as ‘‘scale-sensitive’’

compared with those that could be classified as ‘‘scale-

invariant’’ (see Fig. 1). We defined scale-sensitive species

as those that responded significantly (either positively or

negatively) to the amount of native vegetation cover at

one or two scales of measurement (for example, at the

landscape scale), but nonsignificantly at the other scales

(the site and farm scales in this example). We defined

scale-invariant species as those that exhibited consistent

significant (positive or negative) responses at all three

scales of measurement (Fig. 1). We note the important

distinction between no response to vegetation cover at

any scale and statistical significant response at all or

some scales.

Theme 2. Temporal relationships between bird occupancy

and the amount of native vegetation cover

In Theme 2, we explored relationships between

temporal changes in bird occupancy and temporal

changes in native vegetation cover over the period

2002 to 2010 at each of the three spatial scales. As for

Theme 1, we sought to identify scale-sensitive and scale-

invariant species.

FIG. 1. Potential scenarios showing effect sizes of relation-
ships between occupancy of individual bird species and the
amount of native vegetation cover at three different spatial
scales.
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Theme 3. Comparison of cross-sectional vs. temporal

relationships between bird occupancy and amount of

native vegetation cover

Finally, for each individual bird species, we compared

cross-sectional relationships at different scales with its

relationships to temporal changes in vegetation cover at

corresponding scales. In environments where active

restoration has been taking place, differences between

cross-sectional and temporal responses can arise. This

may be because vegetation cover at a target spatial unit

would be well established (e.g., old-growth woodland),

whereas temporal increases in cover would result largely

from newly planted areas or natural regeneration. Old-

growth woodland, natural regeneration, and plantings

provide different habitat for birds (Lindenmayer et al.

2012) and hence temporal relationships tell us about

direct effects of restoration that may be different from

inferences from cross-sectional analyses.

Our aim was to develop a new level of understanding

of species-specific scale responses to native vegetation

cover in areas dominated by agriculture. However, the

effectiveness of conservation efforts in agricultural

areas, such as those in agri-environment schemes, are

poorly known in most parts of the world (Kleijn et al.

2011). The work we report here will provide an

improved understanding of the effectiveness of: (1)

protecting (e.g., reserving) existing areas of native

vegetation in agricultural areas, and (2) increasing the

amount of native vegetation such as through restora-

tion programs, and (3) management interventions at

particular spatial scales. Such work also may indicate

which species are likely to respond to intervention

efforts aimed at increasing native vegetation cover over

time.

METHODS

Study area

Our study was conducted in a 150 3 120 km area of

the South West Slopes of New South Wales, southeast-

ern Australia, spanning the towns of Junee (0552952 E,

6140128 N) in the north and Albury (0494981 E,

6008873 N) in the south, and Gundagai (600532 E,

6119073 N) and Howlong (467090 E, 6017897 N) in the

east and west, respectively (Fig. 2). Coordinates are

UTM. The predominant form of native vegetation was

temperate eucalypt woodland (sensu Keith 2004)

dominated by White Box, Eucalyptus albens, Grey

Box, E. microcarpa, or other eucalypt tree species such

as Yellow Box, E. melliodora, Blakely’s Red Gum, E.

blakelyi, Red Stringybark, E. macrorhyncha, and Red

Ironbark, E. sideroxylon. Plantings were areas of

planted native vegetation characterized by a mix of

local endemic and exotic Australian ground cover,

understory and overstory plant species. Most plants

PLATE 1. Willie Wagtail on nest. Photo credit: D. Michael.

September 2014 1277SCALE AND VEGETATION EFFECTS ON BIRDS

215



FIG. 2. Map showing 23 landscapes (large circles) each with two farms (medium circles). Within each farm, four 2-ha sites
(small circles) were monitored. Shading shows the area of native vegetation cover in years 2002 and 2010.
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were typically spaced 2 m apart, but there was not a

standard spacing, and plant species composition proto-

cols applied in revegetation efforts.

The South West Slopes region was ideal for study

because: (1) the spatial cover of native vegetation varied

from 4% to 30% per farm or per landscape; and (2)

native vegetation cover on some farms and in some

landscapes has been increasing over the past two

decades as a result of extensive revegetation programs

(Munro and Lindenmayer 2011) and through natural

regeneration (Geddes et al. 2011) (e.g., Fig. 3a). These

features can be seen on digitized satellite images of our

study region (Fig. 2) as well as from photo points taken

at the site level (see Fig. 3b as an example).

Study design

We studied 23 landscapes where a landscape was

defined as a relatively homogenous circular area

covering 10 000 ha; these were chosen to represent

landscapes with active restoration programs and others

without tree planting programs. In ‘‘restored’’ land-

scapes, one farm (;1000 ha in size) was selected with

plantings and one without. These 46 farms were

predominately wheat or canola cropping properties or

sheep (Ovis ovis)/cattle (Bos taurus) grazing enterprises.

Within each farm, four 2-ha sites were selected, giving a

total of 184 sites. On farms with areas of restoration,

two sites were plantings and two other sites were

remnant vegetation sites. Selection was ‘‘pseudo-ran-

FIG. 3. (a) Extensive plantings on a farm targeted for detailed and repeated field surveys (image taken in mid-2000). (Photo by
David Lindenmayer). (b) Photo point showing the extent of vegetation cover in 2002 and 2013. (Photos by Mason Crane and
Sachiko Okada).
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dom’’ following an informal enumeration of potential

landscapes, farms, and sites. Further details on the

experimental design are provided in Cunningham et al.

(2007).

Bird surveys

Our study region supports .170 bird species (see

Appendix A). Over half of these species are woodland

dependent. These taxa include .20 species of conserva-

tion concern (sensu Reid 1999, Montague-Drake et al.

2009). The bird community in the study region includes

a range of native ‘‘generalist’’ species that occur in

heavily cleared paddocks and cultivated areas (e.g., the

Brown Songlark, Cinclorhamphus cruralis). Only four

species are exotic, of which the House Sparrow (Passer

domesticus) and Common Starling (Sturnus vulgaris)

have been declining significantly over the past decade

(Lindenmayer and Cunningham 2011).

We completed spring surveys of birds on all 184 sites

in 2002, 2004, 2005, 2007, 2008, 2009, and 2010. Our

bird-counting protocols entailed repeated five-minute

point interval counts (sensu Pyke and Recher 1983) at

each of the 0-m, 100-m, and 200-m points along a

permanent transect at each site. In each survey year, all

sites were surveyed by two different observers on

different days. We completed counts within four hours

of dawn and did not undertake surveys on days of poor

weather (rain, high wind, fog, or heavy cloud cover).

We report results for 24 species at the landscape and

farm level, but this was reduced to 19 at the site level,

because mean occupancy rates were deemed too low to

facilitate meaningful analyses. This suite of species

included woodland-associated birds and open-country

species, large- and small-bodied birds, and sedentary

and wide-ranging species (including summer migrants).

Several of these species have been considered to be either

declining (e.g., Reid 1999) or at risk of decline

(Montague-Drake et al. 2009), including the Brown

Treecreeper (Climacteris picumnus), Superb Parrot

(Polytelis swainsonii ), Rufous Whistler (Pachycephala

rufiventris), and Jacky Winter (Microeca fascinans) (see

Appendix A). This decline is believed to be, in part,

because of a loss of suitable habitat resulting from past

vegetation clearing and/or a reduction in vegetation

condition as a result of livestock grazing and weed

invasion (Ford 2011). The suite of species analyzed also

included the Noisy Miner (Manorina melanocephala),

which displays aggressive behavior toward other (typi-

cally smaller) native species (Clarke and Grey 2010), and

hence is considered to be an animal of management

concern.

Vegetation cover as a potential explanatory variable

We considered four measures of vegetation cover: the

total (percentage) amount of woody vegetation cover,

the number of native vegetation patches, the average

patch area (hectares), and the standard deviation of

patch area. We calculated each of these measures at the

site, farm, and landscape scales using grids of annual

forest extent and change between 2002 and 2010 derived

from satellite imagery (Furby 2002). Grid resolution was

25 3 25 m, and vegetation cover was allocated to grid

cells where the minimum canopy cover was 20% over a

minimum area of 0.2 ha, with potential height at least

2 m. We calculated measures of woody vegetation for a

site by considering all grid cells within 500 m of the

center of a site (;80 ha). We also calculated values for

these measures at the farm scale, a 2-km radius around

the center of a farm (;1300 ha), and at the landscape

scale, a 5.6-km radius (;10 000 ha). We found strong

effects for one of the four measures, log % of native

vegetation cover, with only very limited additional

information from analyzing the other three (i.e., number

of patches, average patch area, the standard deviation of

patch area). Therefore, we presented our findings only

for log of the percentage vegetation cover.

Statistical analysis

Interpolation of estimates of bird occupancy in 2002

and 2010.—For simplicity, we describe a statistical

model for landscape-scale bird occupancy. For each

species our principal objective was to obtain a ‘‘best’’

estimate of occupancy at two time points, 2002 and

2010. This was achieved by considering all surveys

simultaneously and modeling the trends for each

landscape. We briefly describe our statistical approach

below.

We fitted a linear logistic model with logit( p) as the

response variable (where p is the occupancy rate ), with

terms Landscape, Time (as a linear effect) and Land-

scape 3 (linear) Time interaction as fixed effects. This

model facilitated prediction of ‘‘linearly smoothed’’

logit(bird occupancy) values at each landscape for each

year, together with estimates of the variance of the

predicted values. We used ‘‘linearly smoothed’’ predicted

bird occupancy values for each landscape at spring 2002

and spring 2010 as data for the next stage of analysis.

Modelling the relationship between bird occupancy and

the log percentage native woody vegetation at one scale

and one temporal scale.—Again for simplicity, we

describe our statistical model for landscape-scale bird

occupancy (logit(p)). Our response variable, the pre-

dicted probability of occupancy ( p), then varied at three

scales; between-landscape, between-year, and between-

year within-landscape. The same applied to the candi-

date explanatory variables representing the amount of

habitat (primarily here the log of percentage vegetation

cover).

Importantly, observations within the same landscape

shared common spatial factors, and this may make the

results more homogeneous than those of a random

sample of observations drawn across landscapes. Our

proposed statistical model reflected this feature, and

hence we specified and accounted for the spatial

dependence structure by treating the factor ‘‘Landscape’’

as a random effect in our model.

ROSS CUNNINGHAM ET AL.1280 Ecological Applications
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If we regard Landscape (l ) and Year (y) as random

effects and vegetation cover as a fixed effect, we have

Yij ¼ lþ li þ yj þ bXij þ eij

where l¼ grand mean; b¼ the regression coefficient for

the explanatory variable Xij, the log vegetation cover.

Assume li, i¼ 1, � � � , 23, independent N(0, r2
l ), yj, j¼1, 2

independent N(0, r2
y), and eij independent N(0, r2

e),

where r2
l , r2

y , r2
e are known as variance components.

The parameter Yij denotes logit ( pij) on the ith landscape

in the jth year.

The above model fits within the general framework of

general linear mixed models (Galwey 2006). Restricted

maximum likelihood was used to estimate variance

components and weighted least squares for estimating

fixed effects. We assessed statistical significance of

effects by calculating adjusted Wald statistics (Kenward

and Rogers 1997). Extrinsic weights were based on the

standard errors of the predicted values obtained from

the previous analysis. We routinely used general model

checking procedures to identify aberrant data and check

the model assumptions.

We emphasize that a special feature of longitudinal

data is that inferences pertaining to regression relation-

ships at different levels can be segregated. For example,

the within-landscape regression coefficient can be

estimated by comparing individual responses at two

times (2002 and 2010) assuming the given habitat

variable changes with time. This eliminates the effect

of unmeasured geographic and environmental charac-

teristics, which vary across the target population, and

which may obscure the estimation of direct between-

landscape relationships; that is, their influence is

cancelled in the estimation of the within-landscape

relationships.

RESULTS

Cross-sectional relationships between bird occupancy

and the amount of native vegetation cover

We found that the slopes of the cross-sectional

relationships between the occupancy of bird species

and amount of vegetation cover were generally consis-

tent at the landscape and farm scale, but levels of

statistical significance were seldom the same at all scales

(Figs. 4 and 5; Appendix B). For example, the Superb

Parrot and Pied Butcherbird (Cracticus nigrogularis)

were most often found in landscapes and farms with low

levels of native vegetation cover (P , 0.05) (Figs. 4a and

5; Appendix B). However, there was no evidence of a

relationship at the site level for these species. The Noisy

Miner was significantly more likely to be recorded in

landscapes with low levels of native vegetation cover (P

¼ 0.001), but exhibited no significant native vegetation

cover relationships at the farm and site scale (Fig. 4b;

Appendix B).

We found significant scale-invariant negative rela-

tionships between bird occupancy and native vegetation

cover for the Galah (Eolophus roseicapillus) (Fig. 4c) and

Brown Songlark (Fig. 4d). Other significant negative

responses included those for the Common Starling at the

farm and site scale (consistent slope at the landscape

scale) and the Red-rumped Parrot (Psephotus haemato-

notus) at the site scale (Appendix B).

Significant positive responses between species occu-

pancy and native vegetation cover included those for the

White-plumed Honeyeater (Lichenostomus penicillatus)

at the landscape and farm scale (Fig. 4e; Appendix B);

the Grey Shrike-thrush (Colluricincla harmonica) at the

landscape and site scale; Crimson Rosella (Platycercus

elegans), Magpie-lark (Grallina cyanoleuca), Red Wat-

tlebird (Anthochaera carunculata), and the Willie Wag-

tail (Rhipidura leucophrys; see Plate 1) at the landscape

scale; and the Rufous Whistler at the site scale (Fig. 4f;

Appendix B).

Temporal relationships between bird occupancy and the

amount of native vegetation cover

There was a 3.5% increase in the amount of native

vegetation cover in our study area between 2002 and

2010. We found a significant negative relationship

between temporal change in vegetation cover and

temporal change in occupancy of the Jacky Winter at

the landscape scale (P¼ 0.04) (Appendix C). There was,

however, evidence of significant negative relationships

between occupancy of several other species at the farm

scale, site scale, or both, and the increase in vegetation

cover (Fig. 5; Appendix C). This included the Magpie

Lark and Noisy Miner at both the farm and site scale,

the Grey Fantail (Rhipidura albiscapa) and Willie

Wagtail at the farm scale, and Crested Shrike-tit

(Falcunculus frontatus) at the site scale. In contrast, we

found a positive relationship between temporal increases

in vegetation cover and changes in occupancy of Superb

Parrot at both the farm and site scale, and the Rufous

Whistler at the site scale (Fig. 5; Appendix C).

Comparison of cross-sectional vs. temporal relationships

between bird occupancy and amount of native vegetation

cover

Several species exhibited marked differences between

cross-sectional responses to the amount of native

vegetation cover compared to the response to temporal

changes in vegetation cover (Figs. 5 and 6). There was

weak evidence (P ¼ 0.089) that the Willie Wagtail was

more likely to be found on farms with more vegetation

cover, but it responded negatively (P ¼ 0.047) to the

temporal increase in cover at the farm scale (Fig. 6a).

The Superb Parrot was less likely to be recorded on

farms with high levels of native vegetation (P ¼ 0.018),

but exhibited a significant (P ¼ 0.003) positive response

to a temporal increase in vegetation cover at the farm

scale (Fig. 6b). The Noisy Miner showed no significant

relationships with the amount of cover at the farm and

site scales, but was significantly less likely to be recorded

on farms (P ¼ 0.004; Fig. 6c) and on sites where there
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was a temporal increase in cover (P , 0.001; data not

shown). We found a similar response in the White-

plumed Honeyeater, which showed no response to the

amount of native vegetation cover, but a highly

significant (P , 0.001) negative response to temporal

changes in vegetation cover (Fig. 6d). The Grey Shrike-

thrush was significantly more likely (P ¼ 0.001) to be

found on sites with more cover but exhibited no

response to temporal increases in cover at a given site

(Fig. 6e). We also found that the Rufous Whistler was

more likely (P ¼ 0.017) to occupy sites with more

vegetation cover and also responded positively (P ¼
0.006) to increases in vegetation cover at a given site

(Fig. 6f ).

DISCUSSION

We have statistically examined spatial-scale effects on

both cross-sectional and temporal relationships between

bird occupancy and native vegetation cover. Our

analyses lead to two important general principles,

namely: (1) the empirical response of a given species to

native vegetation cover at a given spatial scale may be

quite different from its response at another scale, and (2)

there can be notable differences between cross-sectional

responses and temporal response and these differences

will be scale-sensitive for some species but scale-

invariant for others. Our work has significant implica-

tions for both the spatial scale of conservation efforts in

agricultural environments, and the response of biota to

strategies to maintain existing vegetation cover vs.

efforts to increase the amount of cover over time.

Cross-sectional relationships between bird occupancy

and the amount of native vegetation cover

The effects of spatial scale on relationships between

vegetation cover and biodiversity have rarely been

FIG. 4. Cross-sectional relationships between bird occupancy and vegetation cover at the landscape, farm, and site scales for
selected species. (a) Superb Parrot; (b) Noisy Miner; (c) Galah; (d) Brown Songlark; (e) White-plumed Honeyeater; (f ) Rufous
Whistler. All scientific names of birds can be found in Appendix A.
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examined in agricultural environments (Tscharntke et

al. 2012). Indeed, to the best of our collective

knowledge, the work reported here is the first time that

spatial scale effects have been quantified for individual

bird species in Australian woodland ecosystems. We

found relationships with vegetation cover for several

bird species, including both scale-invariant and scale-

sensitive responses. Our findings support those of

previous workers that suggest that different species will

respond to factors at different spatial scales (e.g., Wiens

et al. 1987, Holling 1992, Levin 1992, Saab 1999),

including the amount of native vegetation cover, and

that the same species can exhibit different responses at

different spatial scales (Forman 1964, Diamond 1973,

Mackey and Lindenmayer 2001).

Spatial scale effects for particular species can often be

explained by aspects of their ecology. In this study, the

Superb Parrot is a wide-ranging granivore that forages

extensively in croplands that dominate heavily cleared

landscapes and farms (Manning and Lindenmayer

2009). This would account for negative relationships

between the occupancy by the Superb Parrot and the

amount of native vegetation cover at a landscape scale

(see Appendix B). However, the Superb Parrot nests in

large, old trees (Manning and Lindenmayer 2009) and

this may explain the positive relationship with vegeta-

tion cover at the site level.

The amount of native vegetation cover is likely to act

as a crude surrogate for the amount of potential habitat

for woodland-dependent birds, some of which are

species of conservation concern, and that showed

positive relationships with the amount of native

vegetation (see Appendix B). Several processes are likely

to underpin positive relationships between vegetation

cover and occupancy for many species. These include

local immigration and extinction rates (Hanski 1994),

habitat diversity and random placement, all of which are

likely to lead to greater occupancy of a larger patch than

a smaller patch by a given species (Connor and McCoy

1979). In addition, larger patches may be less disturbed

FIG. 4. Continued.
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and support more vegetation in better condition (e.g.,

from edge effects [Ries et al. 2004]), and therefore may

support more suitable habitat for a given species

(Knight and Fox 2000).

Temporal relationships between bird occupancy and the

amount of native vegetation cover

The majority of studies of biodiversity worldwide are

cross-sectional investigations, with longitudinal studies

being relatively uncommon (Likens 1989, Muller et al.

2011). Even fewer studies have quantified temporal

changes in biota alongside temporal changes in vegeta-

tion cover at different spatial scales. We found evidence

of positive relationships between changes in bird

occupancy and temporal changes in vegetation cover

for some species, but often at different spatial scales

(Appendix B). Several bird species displayed contrasting

responses to the temporal change in vegetation cover.

This is because increases in vegetation cover over time

are a result of both the expansion of areas of natural

regrowth, such as in gullies or the edges of remnants, as

well as the addition of new restoration plantings

(Geddes et al. 2011). Previous work has indicated that

these areas provide suitable habitat for some species

(e.g., the Rufous Whistler), but are avoided by others

(e.g., Noisy Miner) (Cunningham et al. 2008, Linden-

mayer et al. 2010b). Our study suggests that conserva-

tion and restoration interventions to increase habitat

amount might therefore affect species differently de-

pending on their preference for young vegetation.

Comparison of cross-sectional vs. temporal relationship

between bird occupancy and amount of native vegetation

cover

To the best of our collective knowledge, our study is

the first to contrast differences in bird responses to

existing (cross-sectional) levels of vegetation cover with

their response to temporal changes in the amount of

cover. Indeed, for some species the responses were not

consistent (Fig. 6d; e.g., the Superb Parrot). We suggest

FIG. 5. Trellis plot, showing for each selected bird species: (1) a plot of effect sizes of the cross-sectional relationship between
the odds of occupancy and log(% cover of native vegetation) at three scales: landscape (L), farm (F), and site (S); (2) a plot of effect
sizes of the relationship between the change (between 2002 and 2010) in odds of occupancy and change in log(% cover of native
vegetation) at the three scales: landscape (L), farm (F), and site (S). A solid line joins effects for (1), and a dashed line joins effects
for (2). All scientific names of birds can be found in Appendix A.
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FIG. 6. Regression relationships of the odds of occupancy of a given bird species between and within spatial units. Units refers
to a particular scale (farm or site). Units are arranged along the x-axis according to the logarithm of percentage cover of native
vegetation. The thick black line represents the ‘‘between-unit slope’’ and the short lines through unit means represent the mean
within-unit slope. As an example, the ‘‘between-farm’’ slope for the Willie Wagtail is 0.25 6 0.14 (mean 6 SE) which indicates that
for every increase of 1 unit in log vegetation cover there is ;25% increase in the odds of occupancy. The ‘‘within-farm slope’’ is
shown by the short line through each dot. This represents the mean rate of change in bird occupancy with the change in log
vegetation cover on farms between 2002 and 2010. In the case of the Willie Wagtail, the slope is negative, showing decrease of 0.74
6 0.36 in the odds of occupancy at any given farm with a change in the log vegetation cover of 1 unit. The within-farm slope
represents the direct relationship between change in bird occupancy and change in vegetation cover at a given farm. A weighted
combination of the within-farm and between-farm slopes gives the overall slope. All scientific names of birds can be found in
Appendix A.
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this finding is associated with broad differences between

existing vegetation cover and changes in vegetation over

time. Most of the past and existing vegetation on farms

or in landscapes is old-growth temperate woodland. In

contrast, new areas of vegetation added to sites, farms

and landscapes during our study were typically stands of

natural regrowth or replantings (Cunningham et al.

2007). Previous studies have clearly shown that these

different kinds of vegetation act as markedly different

habitats for different bird species (Lindenmayer et al.

2012). In the case of the Noisy Miner, the species is less

likely to be recorded in landscapes with low levels of

cover, which are typically dominated by woodland

composed of scattered paddock trees and where birds

have ready line of sight to maintain group cohesion and

detect predators and competitors. However, the Noisy

Miner was negatively associated with temporal increases

in cover at the farm and site levels, where it is likely that

it avoids dense vegetation like plantings and regrowth,

possibly because such kinds of vegetation disrupt its

hyper-aggressive colonial behavior toward other birds.

In another example, we showed that the Crested Shrike-

tit tends to select landscapes with high existing levels of

cover (Appendix B), but responds negatively to tempo-

ral change in cover at all scales (Appendix C). This can

be explained by this species’ strong association with

large trees with hanging bark, which are not provided by

young trees and plantings (Vesk et al. 2008).

Our findings underscore how longitudinal studies can

lead to new insights not provided by cross-sectional data

(see also Wiens 1981, Lovett et al. 2007). This leads to

the identification of ecological responses to temporal

change that would not be possible in short-term studies

or cross-sectional studies (Kruuk and Hill 2008). One

caveat to our findings, however, is that our data

generally showed stronger cross-sectional effects than

temporal effects at larger scales. Given high levels of

inherent variability, detecting temporal relationships will

be difficult for comparatively small samples for a

relatively short period of time. We therefore encourage

researchers to strongly promote the establishment and

ongoing maintenance of long-term studies.

Management implications

The new insights reported here have conservation

implications for agricultural landscapes, including areas

where large investments are made in an effort to

conserve biodiversity (such as through agri-environment

schemes; see Kleijn et al. 2011). These insights are

important because a substantial problem for biodiversity

conservation in agricultural landscapes has been the loss

of native vegetation cover for cultivation and the

establishment of pastures for livestock grazing

(Tscharntke et al. 2012). Conversely, there are many

landscapes around the world where native vegetation

cover has been increasing, either as a result of land

abandonment (Scherr and McNeely 2008), deliberate

replanting of native vegetation (Benayas et al. 2009), or

both (Lunt et al. 2010). Indeed, increasing the amount of

native vegetation cover (through deliberate planting or

promoting natural regeneration) is one of the major

forms of management intervention that can be employed

to improve conservation outcomes in agricultural

landscapes (Lindenmayer et al. 2012). Yet biodiversity

responses to such positive temporal changes in increased

levels of vegetation cover in agricultural landscapes are

rarely quantified.

Our work has demonstrated that both the spatial

scales of existing vegetation cover, and changes in

vegetation cover over time, matter for different bird

species. As an example, we found scale-invariant

species (e.g., the Brown Treecreeper) responded

positively (although not significantly) to existing

vegetation cover at all scales. The Brown Treecreeper

also responded positively to temporal increases in

cover at the farm and site scale (Appendix C).

Therefore, both maintaining existing cover and inter-

ventions to establish new vegetation will have a

positive effect on this particular species of conserva-

tion concern at all scales and over time. In contrast,

site-based restoration programs in otherwise heavily

cleared landscapes will have a positive effect on the

threatened Superb Parrot, as indicated by its negative

association with vegetation cover at the landscape

scale but positive response to temporal increases in

cover at the site level. Some species of conservation

concern (e.g., Jacky Winter) were positively associated

with existing overall levels of vegetation cover but

responded negatively to temporal increases in native

vegetation cover (Fig. 5). Strategies to conserve such

kinds of species must be focused on preventing

vegetation removal. This is because simply adding

vegetation back into a landscape or on a farm

following previous clearing (e.g., through replanting

programs) will not directly restore such species. This,

in turn, has major implications for the effectiveness of

biodiversity conservation approaches like offsetting

(Maron et al. 2012b), as it suggests that clearing of old-

growth woodland vegetation on a farm or in a

landscape may not be readily substituted for by the

establishment elsewhere of new areas of vegetation

(plantings and natural regeneration).

A key research challenge is to develop an improved

understanding of the ecological scales of responses of

biodiversity to both the total amount of vegetation

cover in agricultural landscapes and temporal changes

in the amount of cover (Tscharntke et al. 2012). This is

critical for guiding both the protection (e.g., reserva-

tion) of existing areas of native vegetation in agricul-

tural areas and identifying the most effective programs

(such as those through agri-environment schemes) for

increasing the amount of native vegetation. We have

demonstrated there are inter-specific, scale-dependent

differences in responses to existing vegetation cover

and temporal changes in vegetation cover. This

underscores the importance of clearly articulating the
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objectives of conservation efforts at different scales

and over time, including identifying those taxa being

targeted in vegetation preservation and replanting

programs (Perkins et al. 2011). By taking a multi-

scaled approach, we have been able to better identify

which species are responding to the amount of

vegetation cover as well as the changes in vegetation

cover over time.
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Introduction
Long-term ecological research is recognized globally as 
critical for understanding environmental change (Hobbie 
et al. 2003; Kratz et al. 2003; Turner et al. 2003). Long-
term studies of ecological phenomena are essential for 
understanding slow processes, subtle processes, processes 
with high annual variability, rare events or episodic 
phenomena, and complex phenomena (Likens 1983; 
Strayer et al. 1986; Lindenmayer and Likens 2010), and 
for formulating and testing ecological theory (Franklin 
1989). However, in Australia, there has been a paucity of 
long-term ecological studies, with few running more than 
50 years and none of those having replicated plots from 
different experimental treatments (Lunt 2002).

Designed experiments allow the determination of causal 
links between manipulated factors and their measured 
effects on an ecosystem (Tilman 1989). This makes 
them particularly useful in restoration ecology where 
relationships between actions and outcomes can be 
established and then incorporated into management 
practices. New long-term ecological restoration 
experiments are now being established in Australia 
(e.g. Margules 1992; Lindenmayer et al. 2001), but 
they are still rare. Large-scale ecological restoration 
projects are under-utilized as experiments to inform 
both management action and ecological theory (Holl 
et al. 2003). There is also a growing recognition of the 

Integrating research and restoration: the 
establishment of a long-term woodland 
experiment in south-eastern Australia
A.D. Manning*1, J.T. Wood1, R.B. Cunningham1, S. McIntyre2, 
D.J. Shorthouse1†, I.J. Gordon3 and D.B. Lindenmayer1

1 The Fenner School of Environment and Society, The Australian National University, Canberra 
ACT 0200 Australia  
adrian.manning@anu.edu.au
Tel: +61 2 6125 5415 Fax: +61 2 6125 0757

2 CSIRO Sustainable Ecosystems, PO Box 284, Canberra ACT  2601, Australia
3The James Hutton Institute, Mylnefield, Invergowrie, Dundee, DD2 5DA, UK
*Corresponding author
† Formerly Manager (retired), Research and Monitoring, ACT Parks, Conservation and Lands, 
Department of Territory and Municipal Services

A
B

ST
R

A
C

T

Long-term studies of ecological restoration, within a designed randomized experimental framework, 
are uncommon; however, such projects provide hitherto under-utilized opportunities to inform both 
evidence-based management planning and action, and ecological theory. Baseline data collected prior to 
the application of treatments allows accurate estimation of changes taking place on the experimental 
units, and random allocation of treatments ensures that relations between causes and effects can 
be established. This is critical to effective active adaptive management. In this paper, we outline the 
establishment phase of a new long-term ecological restoration experiment in south-eastern Australia, 
that will test ways of improving critically endangered box gum grassy woodlands for biodiversity. 

In the experimental design, treatments include the addition of 2000 tonnes of coarse woody debris, 
exclusion of kangaroos and fire. Random variation in biophysical variables occurs at several levels. 
To facilitate accurate estimation of key main effects, selected high order interactions are partially 
confounded with ‘random’ block terms. Response variables include: plants, birds, small mammals, 
reptiles and invertebrates. Analysis of baseline data across selected response variables confirmed no 
pre-treatment effects. 

The experiment provides a strong inferential framework for tracking the effects of restoration 
treatments on woodland biodiversity over coming years. It also provides a model for other similar 
experiments that integrate restoration and research. A newly constructed feral animal-proof fence, 
that will allow reintroduction of locally extinct species, including ecosystem engineers, will provide 
additional opportunities to research the woodland restoration process. This experiment will become 
a long-term ecological research site, and an ‘outdoor laboratory’ for ecological restoration research, 
and community and student learning. 

Key words: box-gum grassy woodlands, Eucalyptus blakelyi, Eucalyptus melliodora, evidence-based conservation, 
feral animal-proof fence, Mulligans Flat – Goorooyarroo Woodland Experiment.
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need for conservation decisions to be evidence-based 
(Sutherland et al. 2004). Evidence-based management 
is also recognized as a desirable objective by government 
land management agencies; however, there is often 
a lack of resources and expertise to undertake the 
underpinning research. There is a critical need for long-
term experiments in ecological restoration to inform 
conservation decision-making, particularly in highly 
modified or endangered ecosystem types. 

An example of a highly modified endangered ecosystem 
in Australia is temperate woodland, which is one of the 
vegetation types most profoundly affected by European 
settlement (Yates and Hobbs 1997; Hobbs and Yates 
2000). A range of human-induced disturbances have 
led to a drastic reduction in the extent and condition 
of temperate woodland ecosystems. These threatening 
processes include: direct vegetation clearing, vegetation 
modification and fragmentation, altered grazing 
regimes, removal of fallen timber and dead trees (often 
for firewood), inappropriate re-vegetation activities, 
physical disturbance (e.g. ‘tidying up’, cultivation, 
development), adding fertilizers, introduction of invasive 
exotic pest animals and plants and human-induced 
climate change. These have resulted in changes to soil 
health and nutrient cycling (including disruption of 
mycorrhizal fungi communities), changed levels of tree 
regeneration (in particular, cessation of recruitment), 
loss of understory vegetation, changed ground flora 
composition, weed invasion, declining tree health, 
invasive exotic pest animals, changed hydrology, decline 
or extinction of native fauna and elevated salinity (Yates 
and Hobbs 1997; Hobbs and Yates 2000; Landsberg 
2000; Prober et al. 2002). Most of these threatening 
processes and their consequences are ongoing, and 
do not act in isolation, but interact synergistically 
(Yates and Hobbs 1997). This has resulted in the 
local, regional or global extinction of many plants and 
animals (Hobbs and Yates 1997; Hobbs and Yates 2000), 
including many small to medium-sized mammals, that 
played a ‘keystone’ role in these ecosystems (Burbidge 
and McKenzie 1989; Short and Smith 1994; Dickman 
1994; Short 1998; Martin 2003). These losses are, in 
themselves, threatening processes. 

The need to conserve remaining areas of native 
temperate woodlands is clear, and there is a general 
consensus about the need for remaining stands of 
woodland to be actively managed to maintain and 
improve their condition (Yates and Hobbs 1997; 
Hobbs and Yates 2000; Prober et al. 2002), to facilitate 
their regeneration and restoration (Spooner et al. 
2002), and to conserve key elements of biota, such as 
birds and reptiles associated with native ground covers 
and understorey (Bennett et al. 2000; Freudenberger 
1999). However, the effectiveness of some management 
interventions is poorly quantified because of a lack of 
high quality long-term experimental data that allows 
strong inference of treatment cause and effect. 

In this paper, we outline a designed restoration 
experiment: the ‘Mulligans Flat – Goorooyarroo 
Woodland Experiment’. The project aims to understand 

ways of restoring the structure and function of temperate 
woodlands to increase biodiversity. A set of key ecosystem 
manipulations have been chosen to investigate how 
to reverse the decline in the biodiversity of these 
woodlands. These are: the addition of coarse woody 
debris, kangaroo exclusion and fire. The manipulations 
have been applied in a randomised incomplete block 
design which maximises the accuracy with which the 
effects can be estimated (as well as enabling interactions 
to be estimated). In addition, feral animal species have 
been excluded from one of the reserves (Mulligans Flat) 
since June 2009. 

In establishing this designed restoration experiment, 
our intention is for it to become a long-term ecological 
research site and an ‘outdoor laboratory’ for ecological 
restoration research, and community and student learning. 
In this paper, we: 

1. outline the rationale and experimental design;

2. present selected baseline data to demonstrate that
no pre-treatment effects exist, and to quantify
variability;

3. provide a central reference document to which
researchers can refer when undertaking research at
the site in the future;

4. provide a model for the establishment of similar
projects that integrate ecological restoration and
research in the future.

Background 

Yellow Box- Blakely’s Red Gum Grassy 
Woodlands
Yellow Box- Blakely’s Red Gum Grassy Woodland 
(a type of temperate woodland) is an ecological 
community dominated by mixtures of Yellow Box 
Eucalyptus melliodora and Blakely’s Red Gum E. blakelyi 
(ACT Government 2004a). In combination with White 
Box E. albens, this community once occurred over 
extensive areas of south-eastern Australia, including 
the western slopes and tablelands of the Great Dividing 
Range, southern Queensland, western New South 
Wales, the Australian Capital Territory (ACT) and 
Victoria (Beadle 1981; Department of Environment 
and Heritage 2006). Since European settlement, 92% 
of White Box-Yellow Box-Blakely’s Red Gum Grassy 
Woodland has been cleared (over 5 million hectares) 
(Threatened Species Scientific Committee 2006) and 
consequently, it is recognized nationally as a critically 
endangered ecological community (Department of 
Environment and Heritage 2006).

Research site 
The study area is in north-eastern ACT, and comprises 
two adjacent nature reserves - Mulligans Flat and 
Goorooyarroo Nature Reserves (see Figure 1). Mean 
daily temperatures for each month in the area range from 
a minimum of 6.5 to a maximum of 19.7˚ celsius, and 
mean annual rainfall is 615.9 mm (1939-2009; Bureau of 
Meteorology 2009). 
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A general summary of the soils in the reserves can be 
found in McIntyre et al. (2010). Together, the Mulligans 
Flat-Goorooyarroo Nature Reserves total 1494 ha, 
and contain 1210 ha of Yellow Box – Blakely’s Red 
Gum Grassy Woodland (Felicity Grant, 2010, personal 
communication)- the largest and most intact example 
of its type in the ACT (ACT Government 2004a). 
Mulligans Flat was gazetted in 1994 (Sharon Lane, 2009, 
personal communication) after a major campaign by 
community groups (Lindenmayer 1992). Goorooyarroo 
was gazetted in 2006 (Sharon Lane, 2009, personal 
communication) following a reassessment by the ACT 
Government of its conservation priorities in the face of 
new residential development in Gungahlin (Canberra’s 
newest town). As well as hill tops that have historically 
been protected, the reserve includes significant low 
lying areas – supporting Yellow Box – Red Gum Grassy 
Woodland and derived grasslands. These are areas that 
have typically been managed as rural properties and 
grazed by sheep and cattle before being developed as 
suburbs. It was calculated that $300 million in revenue 
from potential land sales was foregone to establish the 
reserve (ACT Government 2004b). 

The Mulligans Flat-Goorooyarroo Nature Reserves have 
several unique features that make them suited for research: 

1. they support one of the most extensive remaining areas 
of publicly managed native woodlands dominated by
critically endangered Yellow Box-Blakely’s Red Gum
Grassy Woodland in Australia;

2. extensive fine-scale mapping data of vegetation cover,
structure and past management history is available
from Government databases and records;

3. there is one long-term owner and land manager – the
ACT Government;

4. there is very strong support from the ACT
Government Parks management agency for this
project, particularly the implementation of
experimental treatments;

5. the reserves are situated near a large centre of
population (Canberra), and universities and research
institutions, which means they are especially suitable
as an ‘outdoor laboratory’ for research, teaching and
learning at all levels.

6. there is a well-educated local community and a
number of special interest groups that actively support
woodland conservation and restoration activities.

Australian National University-ACT 
Government Collaboration 
The Mulligans Flat – Goorooyarroo Woodland 
Experiment is funded through an Australian Research 
Council Linkage Grant (LP0561817) scheme which 
is designed to foster genuine collaboration between 
Universities and ‘Industry Partners’. Industry partners 
contribute cash and in-kind contributions to support a 
project. In this project, the ACT Government in-kind 
contributions include staff time, specialist logistical 

Figure 1 – The location of Mulligans Flat and Goorooyarroo Nature Reserves in the northern Australian Capital Territory 
(A.C.T). (a) the A.C.T within Australia. (b) the reserves within the A.C.T. (c) the experimental 1 hectare sites within 
the reserves.
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and procurement skills, and materials. Cooperative 
long-term ecological research projects with government 
agencies, such as this, are recognized as a way to 
improve the viability of large-scale experiments 
because they own large land holdings and can provide 
security and stability (Franklin 1989). As the reserves 
constitute some of the best and largest examples of 
Yellow Box-Blakely’s Red Gum Grassy Woodland in 
public ownership in south-eastern Australia, it is 
one of the few places where an array of management 
regimes (and their interactions) can be investigated in 
a comprehensive manner. 

Materials and methods 

Experimental structure 
The vegetation structure and composition and the 
topography of the two reserves justifies the Mulligans 
Flat – Goorooyarroo Woodland Experiment being split 
into two ‘companion’ experiments. While both reserves 
will have the same treatments applied, Mulligans 
Flat also had a feral animal-proof fence built around 
it (Figure 2; ACT Government 2009) to allow the 
reintroduction of locally extinct species of animals. 
This management action is neither randomized nor 
replicated, so a formal statistical comparison of the 
presence of the feral animal-proof fence with its absence 
is not possible. However, the removal of feral animal 
species, and the reintroduction of native animals is 
expected to have profound effects on the ecosystem. 
These effects may interact with the experimental 
treatments. Goorooyarroo will continue to have feral 
animals present, and as such, results will be more 
typical of similar situations in the wider landscape. 
Comparisons will be made between the results of the 
two experiments where appropriate. 

The multi-level experiment consists of 24 ‘polygons’ 
selected randomly from a larger set of candidates, with 
four 1 hectare ‘sites’ per polygon (96 sites in total; see 
Figure 3).  Fixed effects are factorial combinations 
of the treatments listed below (as well as vegetation 

structure), which occur at either the polygon level or 
the site level. Within each site, two points or ‘plots’ have 
been established (Figure 3). The experiment provides a 
wide inductive basis for general inferences relating 
to Yellow Box-Blakely’s Red Gum Grassy Woodland 
management regionally. The statistical framework also 
lends itself to additional studies on aspects of woodland 
and restoration management. Hence, the experiment’s 
potential as a long term ecological research site and 
outdoor laboratory. 

Figure 2 – The feral animal exclusion fence in Mulligans Flat 
Nature Reserve. Photo, A. Manning.

Figure 3 Experimental ‘polygons’ are homogenous areas of 
vegetation structure and type within which four 1 ha ‘sites’ 
were placed. Within these, depending on the phenomena 
being investigated, are ‘plots’ – an observational unit
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The polygons as stratifying experimental units 
The key stratifying unit of this experiment is the ‘polygon’ 
(see Figure 3). These are defined as homogenous areas of 
vegetation structure and type, and were surveyed, assessed 
and classified by ACT government staff for management 
purposes. From this database, four combinations of 
vegetation structure were derived: 

1. High Tree Cover, High Shrub Cover (HTHS)

2. High Tree Cover, Low Shrub Cover (HTLS)

3. Low Tree Cover, Low Shrub Cover (LTLS)

4. Low Tree Cover, High Shrub Cover (LTHS)

All four combinations (vegetation classes) did not 
occur in both reserves, and some were re-classified 
to provide sufficient polygons (experimental classes) 
for random allocation. Some polygons also were split 
to produce two for selection when suitable polygons 
were unavailable. The three experimental classes used 
were: Mulligans Flat - HTHS, LTHS and LTLS; 
Goorooyarroo – HTHS, HTLS, LTLS. Experimental 
class has been used for the purposes of this analysis. 
All polygons used have been classified as Yellow Box-
Blakely’s Red Gum Grassy Woodland by the ACT 
Government. Vegetation structure is also considered 
as an experimental treatment (although not an active 
manipulation). The polygon is the experimental unit 
for inferences relating to vegetation structure and 
grazing treatments. 

The site level
Within each experimental polygon, there are four 1 
hectare ‘sites’ (200 m x 50 m; Figure 3). Each site is 
marked in the field along the long axis by plastic pegs at 
the 0 m and 200 m points, and with star pickets at the 50 
m and 150 m points (see Figure 3). The fire and coarse 
woody debris (CWD) treatments are applied at the site 
level. The site is the observational unit for reptiles and for 
vegetation over 0.5 m height.

The plot 
Each 50 m radius plot (2 per site) is centred on a star picket 
(Figure 3). The plot is the observational unit for birds. 

Sub-plot woodland ‘elements’ 
Within Yellow Box-Blakely’s Red Gum Grassy Woodlands, 
there are key structural and ecological elements. Such 
elements can play keystone roles in the ecosystem and 
act as ‘hotspots’ of ecological function such as nutrient 
input and cycling. These elements include trees and 
coarse woody debris. To understand the effects of 
these elements on ecological processes and biodiversity, 
measurement at the sub-plot level is stratified by 
woodland ‘element’. In the first instance, woodland 
elements are the observational unit for invertebrates 
(see below), although results can be aggregated to the 
site level. In the future, additional studies will take 
place based on observations at the woodland element 
level (e.g. Barton et al. 2009), which will allow spatial 
and process modeling of the woodland ecosystem and 
associated biodiversity. 

Treatments – rationale and 
implementation
The treatments in the Mulligans Flat - Goorooyarroo 
Woodland Experiment are: addition of CWD, kangaroo 
exclusion and fire. Vegetation structure is a key stratifying 
factor. It is also treated as a fixed effect in analyses. In the 
following section, the rationale for their inclusion and the 
treatment design is outlined.

Coarse woody debris
In temperate forests globally, fallen timber, or ‘coarse 
woody debris’, has a major influence on the structure 
and function of ecosystems (Harmon et al. 1986). There 
is limited published data on CWD in Yellow Box – 
Blakely’s Red Gum Grassy Woodlands (Manning et al. 
2007; Gibbons et al. 2008). The effect of the broadscale 
removal of CWD on biodiversity and ecosystem function 
is recognised in Australia (Reid 1999; Driscoll et al. 2000). 
Coarse woody debris takes a long time to accumulate 
in woodlands and reversing the negative effects of loss 
cannot be achieved simply by preventing removal. To 
overcome the lack of CWD and its slow accumulation, 
deliberate augmentation can be an effective way of 
reversing negative effects (e.g. Michael et al. 2004; Mac 
Nally and Horrocks 2007; 2008). To our knowledge, this 
has never been attempted in Yellow Box – Blakely’s Red 
Gum Grassy Woodlands on the scale undertaken in this 
experiment (see below). 

There are no pre-European ‘benchmark’ sites containing 
Yellow Box-Blakely’s Red Gum Grassy Woodland (Prober 
et al. 2002) from which to assess ‘natural’ levels of CWD 
(Manning et al. 2007). Therefore, the amount of CWD 
to be added to the treatment sites was determined from 
an earlier investigation in both reserves (Manning et al. 
2007). In that study, it was found that the median CWD 
load was 19.3 m3 per ha (20.5 tonnes/ha). This was used 
as a target tonnage for two treatment types (see below). 
It was not assumed that this represented ‘natural’ levels 
of CWD, but rather that it would produce a significant 
treatment effect. As well as overall tonnage, there is 
some evidence that the distribution of CWD is also 
important to organisms (Mac Nally et al. 2001; Arthur 
et al. 2003). Understanding the effect of the pattern of 
CWD distribution is important because: (1) it is useful 
for managers to be able to optimise the effectiveness 
of CWD augmentation as a management practice; 
(2) because there could be different levels of effort 
and disturbance associated with placing CWD in the 
field; (3) the amount and spatial arrangement of cover 
from predators affects the ‘useability’ of a landscape by 
animals (Laundré et al. 2001; Searle et al. 2008). The 
CWD treatments were as follows: 

1. No added CWD (controls);

2. 20 tonnes of CWD per ha distributed in a dispersed
pattern – ‘Dispersed’;

3. 20 tonnes of CWD per ha distributed to mimic a
natural tree fall - ‘Clumped’;

4. 40 tonnes of CWD per ha with both dispersed and
clumped distribution sites - ‘Dispersed and clumped’.
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A total of 2000 tonnes of CWD was required for 
the experimental treatments. Sourcing and moving this 
quantity of CWD was a significant logistical exercise. 
The only source of significant quantities of coarse woody 
debris was from an ACT Government program of street 
tree renewal. It was decided that eucalypts of any species 
would be used. However, smaller twigs, branches and 
leaves were removed to avoid inadvertent introduction of 
seeds of species that were not locally native. Twenty tonnes 
of CWD was calculated to constitute approximately 31 
logs, if a range of sizes was used. Logs were dispersed 
using a forestry forwarder for 13 days during October 
2007 (Figure 4). Weather conditions were dry during 
this period, which helped minimise site disturbance. The 
forwarder operator was asked to mix log sizes and types 
when loading the vehicle. Substantial efforts were made to 
minimise disturbance to the reserves. Where possible, logs 
were dropped or ‘flung’ into the site from outside the area 
– so that soil compaction within the sites was minimised.

Each log was labeled with a unique ID tag for long term 
research. Levels of pre-treatment CWD (logs over 10 
cm diameter) and ‘fine woody debris’ (FWD, 2 – 10 cm 
diameter) were assessed using the line intersect method 
(Warren and Olsen 1964; Van Wagner 1968) as part of 
the vegetation assessments for trees (see below). This 
will also allow analysis of the relationship between tree 
cover and woody debris inputs and also, in the long-term, 
accumulation rates. 

Kangaroo exclusion 
Kangaroo densities in Mulligans Flat and Goorooyarroo are 
very high by national standards (Howland 2008). Density 
estimates of 1.42 animals ha-1 were made in Mulligans 
Flat in August/September 2008 and 1.95 animals ha-1 
in Goorooyarroo from October 2007 to January 2008 
(Howland 2008; Howland, unpublished data). High levels 
of kangaroo grazing pressure have had a visible effect on 
the ground layer in both reserves (McIntyre et al. 2010). 
Literature on the effects of high kangaroo grazing on 
woodland ecosystems and biodiversity is limited (Howland 
2008). However, it can reasonably be assumed that grazing 
reduces biomass (affecting food and shelter availability for 
fauna), and alters moisture retention, nutrient cycling, 
plant community structure and composition.

To examine the effects of kangaroo grazing, exclosures were 
established around half (48) of the sites to significantly 
reduce the density of kangaroos. Kangaroo densities 
inside and outside exclosures were assessed before and 
after kangaroos were excluded (Howland 2008; Howland, 
unpublished data). Assignment of exclosure treatments to 
polygons was random although, where possible, exclusion 
polygons were fenced together for logistical reasons.

Two types of fences were built: (1) by raising the height of 
existing fences (in Goorooyarroo; Figure 5); (2) completely 
new exclusion fences (in Mulligans Flat). Fences were 
built by ACT Government staff, Conservation Volunteers 
Australia (www.conservationvolunteers.com.au) and a 
fencing contractor. Complete exclusion of grazing can be 
detrimental to vegetation communities that have evolved 
with grazing (Gordon et al. 2004), therefore, the purpose 

of the fences was not to fully exclude kangaroos, but 
rather to significantly reduce relative numbers and effects. 
Kangaroos were herded out of exclosures. After herding, 
some kangaroos remained inside the exclosures, and some 
returned after being herded. When numbers increased 
inside above 0.5 per ha – which was deemed the point at 
which they would have a significant effect (D. Fletcher and 
B. Howland, personal communication) - kangaroos were 
herded out again by park management staff. Kangaroo 
numbers are monitored with direct counts and pellet 
counts (Howland 2008; Howland, unpublished data).

Fire 
Fire is a key form of disturbance in temperate woodlands 
(Hobbs 2002; Prober et al. 2004). However, its effects are 
complex, and vary with the woodland system in question, 
the components of fire regimes (sensu Gill et al. 1981) and 
other factors. Fires can assist nutrient recycling, promote 
regeneration of some plant species, reduce the dominance of 
others such as dense thatches of Themeda australis (allowing 
other plants to grow), and contribute to the maintenance 

Figure 4 – Placement of logs on an experimental site with 
forestry forwarder. Photo, A. Manning.

Figure 5 - A kangaroo exclusion fence in Goorooyarroo 
Nature Reserve. Photo, A. Manning.
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of species richness in the ground and understorey layers 
(Prober et al. 2002). Limited research has been conducted 
on fire in this ecosystem type (Hobbs 2002). For these 
reasons, fire was included as a treatment to examine direct 
effects on plants (e.g. structure, composition, biomass) and 
animals, and the interacting effects with other treatments. 
Fire will be applied to half (48) of the sites. Pre-1750 fire 
regimes in Yellow Box-Blakely’s Red Gum Grassy Woodlands 
are essentially unknown (Threatened Species Scientific 
Committee 2006). Therefore, the intention is not to try to 
recreate past fire regimes, but rather to look at the ecological 
effect of fire. This question is of particular importance to the 
management of nature reserves in the ACT because of a 
requirement to reduce fire fuel hazard along the urban edge 
for asset protection, and need for a better understanding 
of ecological effects of this management action. At time of 
publication, fire treatments have been delayed due to the 
combined effects of drought and intense kangaroo grazing 
on biomass levels (see Results). 

Vegetation
Trees and shrubs are the dominant structural element 
in the woodland ecosystem, and the stratifying variable 
for this experiment. Consequently, they are included as 
treatments in statistical analyses.

Treatment interactions 
There may be important interactions between the 
treatments outlined above. For example, fallen logs can 
act as mesic refuges and micro-fire-breaks for biota 
(reviewed in Lindenmayer et al. 2002). They also can 
provide fuel that increases fire intensity (Bradstock et 
al. 2002; Cary et al. 2003). Hence, there are potentially 
important interacting effects between, for example, fire 
and the addition of CWD. Similarly, biomass removal by 
grazing animals may influence the intensity and frequency 
(and effects) of prescribed burning. The experimental 
design allows estimation of significant interactions. 

Statistical design 
In both experiments, polygons were paired so that all eight 
combinations of CWD treatments and fire occur on one 
site in each pair. Effectively, the CWD treatments were all 
combinations of two factors, one being with and without 
‘clumped’, and the other being with and without ‘dispersed’ 
CWD. The combinations of fire and treatments have a 2 x 
2 x 2 structure. Comparisons between polygons are likely to 
be less accurate than comparisons of sites within polygons, 
and the treatments were allocated so that no treatment main 
effects were confounded with differences between polygons. 
In any of the six polygon pairs, one degree of freedom has 
to be confounded with an interaction term. The design 
ensured that the three factor interaction was confounded 
with polygons in three pairs in each experiment, and each 
two factor interaction was confounded with polygons in one 
pair of each experiment. This enables us to estimate the two 
factor interactions with a high degree of accuracy, while 
retaining the ability to detect a three factor interaction 
should it prove to be important. Apart from vegetation 
structure, all the treatments were allocated at random in 
accordance with the design.

Thus, our design provides a framework for estimating 
and assessing the statistical and practical significance of 
a rich set of hypotheses (enumerated in the ANOVA 
table, Table 1 and 2). In other words, for each reserve, we 
can quantify the effects of experimental class, kangaroo 
exclusion, fire, clumped wood, dispersed wood, and all 
2-way and many 3-way interactions between these factors, 
as well as estimate variability at several levels.

Response variables - rationale
A range of response variables has been chosen to 
examine the effects of the experimental manipulations 
on the structure, composition, ecological processes and 
biodiversity in the reserves. These are: the lower structural 
component of the vegetation and the abundance 
and diversity of birds, small mammals, reptiles and 
invertebrates. The rationale for including these response 
variables is described below.

Vegetation
Plants are critical to the structure and function of the 
Yellow Box – Blakely’s Red Gum Grassy Woodland 
ecosystem and are a major component of biodiversity. A 
key effect of human-disturbance of woodlands has been 
the simplification of habitat through thinning and removal 
of woody vegetation, changes in groundlayer composition 
and prevention of tree and shrub regeneration (Yates 
and Hobbs 1997; Hobbs and Yates 2000). Vegetation 
assessments were undertaken for two key purposes: (1) to 
evaluate the effect of treatments on vegetation structure 
and composition through time, and (2) to provide 
covariates for inclusion in analysis of faunal responses. 

Birds 
The decline in woodland birds associated with the loss 
and modification of temperate woodlands in Australia is 
recognized as a serious conservation problem (Robinson 
and Traill 1996; Garnett and Crowley 2000; Ford et al. 
2001). Yellow Box-Blakely’s Red Gum Grassy Woodlands 
in the ACT support a range of bird species, including 
eight species listed as threatened in that Territory (ACT 
Government 2004a). An additional four species, typical 
of Yellow Box-Blakely’s Red Gum Grassy Woodlands, are 
listed as vulnerable in neighbouring New South Wales 
(ACT Government 2004a). All 12 species have been 
recorded in Mulligans Flat or Goorooyarroo. However, 
of the resident species, the Hooded Robin Melanodryas 
cucullata is very localised, Diamond Firetail Stagonopleura 
guttata, Varied Sitella Daphoenositta chrysoptera and Crested 
Shrike-tit Falcunculus frontatus are rarely seen and the 
Brown Treecreeper Climacteris picumnus disappeared in 
2000 from Mulligans Flat and in 2005 from Goorooyarroo 
(J. Bounds personal communication).

Small mammals 
Since European settlement, there has been a severe 
decline in mammalian fauna in temperate woodlands 
(Burbidge and McKenzie 1989; Dickman 1994; Short and 
Smith 1994; Short 1998; Burbidge and Manly 2002). This 
is due to the combined effects of introduced predators, 
such as foxes Vulpes vulpes and cats Felis catus, competition 
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for food from introduced herbivores such as domestic 
livestock, rabbits Oryctolagus cuniculus and hares Lepus 
europaeus, overgrazing by native fauna, habitat loss and 
modification, and altered fire regimes (Morton 1990; 
Short and Smith 1994; Smith and Quinn 1996). Small 
to medium sized mammals (35 g - 5.5 kg) have been 
particularly affected (Burbidge and McKenzie 1989; James 
and Eldridge 2007). Many small ground-foraging mammals 
had important ecological effects such as mixing of organic 
material into soils, soil aeration, spreading of mycorrhizae 
and seeds, improved water infiltration and germination 
of seeds (Claridge et al. 1992; Garkaklis et al. 1998; 2003; 
Martin 2003). Like elsewhere in Australia, many small 
mammals have become rare or locally extinct in the ACT 
since European settlement (ACT Government 2004a). 
The effects of woodland manipulations on surviving small 
mammal populations is of significant conservation interest 
and is a key starting point for the ecological research. In 
the future, reintroduction of some locally extinct species 
into the feral animal-proof fenced reserve at Mulligans 
Flat will provide added research opportunities (see below).

Two small native mammals of conservation interest have 
been recorded in the Mulligans Flat – Goorooyarroo reserves 
or surrounding areas in recent times. These are the Yellow-
footed Antechinus Antechinus flavipes and the Common 
Dunnart Sminthopsis murina (Frawley 1991). The current 
status of both species in these reserves is poorly known. 
This experiment aims to establish whether these species 
are still present at the experimental sites, and whether 
manipulations can improve the habitat for these species.

Reptiles
Reptiles are thought to be particularly vulnerable to habitat 
loss, fragmentation and degradation. This is because they 
are sedentary, have relatively low mobility and forage 
and live in ground layer substrates and associated micro-
habitats that are most likely to be affected by degrading 
processes (Brown 2001; Brown et al. 2008). Reptiles may 
also be predated by feral foxes and cats. Consequently, the 
effect of experimental treatments and the feral animal-
proof fence on reptiles is of conservation interest. 

Invertebrates
Invertebrates constitute a large proportion of multi-cellular 
species on Earth (Stork 2007), and have a critical role in 
ecosystem processes (Samways 2005). However, despite 
their abundance, diversity and ecological importance, 
most studies of biodiversity focus on birds, large mammals 
and plants (Stork 2007). Invertebrates are included in 
this experiment because of: (1) their abundance, (2) the 
diversity of functional groups, (3) their role in ecosystem 
processes, (4) their relatively small scale of operation 
– which was appropriate for some treatments, (5) their
short generation time and associated rapid response to 
changed environmental conditions, (6) their potentially 
rapid response to woodland manipulations, and (7) their 
importance as a food source for other fauna (e.g. S. 
murina; Fox and Archer 1984). Detailed analysis of the 
beetle data collected in this experiment will be published 
elsewhere (e.g. Barton et al. 2009), and the responses of 
other invertebrate groups will be analyzed at a later date.

Response variables - measurement

Vegetation measurements 
Vegetation surveys were split into two categories: 

(1) Ground layer – below 0.5 m in height and\up to 2 cm 
diameter at breast height (DBH);

(2) Trees – over 0.5 m in height and over 2 cm DBH.

Ground layer and soil measurements
A survey of the ground layer vegetation and ground cover 
characteristics was conducted in Spring 2007, and soils in 
Autumn 2008, with the methods and results presented in 
detail in McIntyre et al. (2010).  In summary, the survey 
was conducted across each of the 96 1 ha sites, using 30 
systematically-located quadrats (0.5 x 0.5 m), per site.  The 
top six species (or species groups) were ranked by biomass 
in each quadrat, and ground cover (litter, litter depth, bare 
ground, cryptogams, live plant basal area, rock and logs) 
was measured at four points in each quadrat.  Total biomass 
estimates were made for each quadrat (non-destructive) 
and these were combined with the ranks to obtain species 
abundances using the BOTANAL methodology (Tothill 
et al. 1992).  Soil samples were taken in Autumn 2008 
to a depth of 10 cm at each quadrat location and pooled 
to obtain an average for each site. The following analyses 
were performed by the Victorian Department of Primary 
Industries Laboratory, Werribee Victoria: nitrate-n (mg/
kg), total carbon (g/100g), total nitrogen (g/100g), C:N 
ratio, organic matter (g/100g), electrical conductivity 
(dS/m), pH(CaCl2), total soluble salts (%), available 
phosphorous(Colwell) (mg/kg), texture, colour.

Tree measurements
All trees over 2 cm DBH were measured at each site and a 
GPS location was recorded for each tree over 10 cm DBH. 
Tree species and health also were recorded. Area coverage 
of tree regeneration below 2 cm DBH was measured. 
Where amounts of regeneration were relatively small, 
absolute counts were made. The aim of this approach was 
to record the tree population structure before treatments 
were implemented. This will provide covariates which can 
be used to examine the relationship between woodland 
community, and CWD accumulation, and ultimately to 
allow process and spatial modelling of past and future 
scenarios. The detailed results of vegetation baseline 
surveys will be presented elsewhere.

Bird survey 
Birds surveys were undertaken in October and November 
in 2006 by experienced bird observers. Birds were 
surveyed for 10 minutes using the point count method, 
at each star picket at the 50 m and 150 m position (i.e. 
two per site). Each observer was randomly allocated 
a polygon containing four sites each morning. Counts 
took place from 6:30am until completion, and cold, 
windy or wet conditions were avoided. Birds respond at a 
range of spatial scales, from the site level through to the 
landscape level. Therefore, observers noted the presence 
and abundance of birds in concentric bands (0 – 25 m, 25 
– 50 m, 50 – 100 m and over 100 m and overhead). Data
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collected up to 50 metres from the observer were used for 
the analysis in this paper. Observer heterogeneity in bird 
counts is well known (e.g. Kavanagh and Recher 1983; 
Recher 1988; Cunningham et al. 1999; Lindenmayer et 
al. 2009). To allow for this heterogeneity, two counts were 
conducted at each point by two different observers, on 
different days (sensu Cunningham et al. 1999). Therefore, 
each site had four point counts each year. The order in 
which sites were surveyed was reversed on the second day 
to minimize any effect of time of survey.

Small mammal survey
Pilot surveys with Elliott traps in Goorooyarroo Nature 
Reserve did not reveal the presence of any small mammals. 
Footprint tracking tunnels were, therefore, chosen as the 
best survey technique, in light of the likely low small mammal 
densities. Tracking tunnels have been used extensively for 
surveying rodents (King and Edgar 1977; Stokes et al. 2004). 
In this study, tunnels were made from 400 mm of conduit. 
Inside each tunnel was a plastic plate with an ink pad in the 
middle, and two 120 mm by 90 mm pieces of paper on either 
side. The ink used was a mixture of water (800 ml), food 
dye (200 ml) and poly-ethylene glycol (200 ml) to prevent 
drying. A pea-sized smear of peanut butter was placed on 
the side of the tunnel, above the ink pad as an attractant.

During each survey period, four tracking tunnels were 
placed in each site (2 tunnels, 10 m either side of each 
star picket along the central axis of the site). Traps 
were put out on Monday and collected on Friday (16 
trap nights per site, 768 per reserve, 1536 in total). 
Footprints were identified using a reference collection 
developed by CSIRO Sustainable Ecosystems. Trapping 
took place in November/ December 2006 and May/June 
2007. Extensive periods of rain in December 2007 made 
trapping impossible for that period.

Reptile survey 
In preliminary studies, pitfalls were trialed at a subset of 
sites in Goorooyarroo (3 x 20l buckets set 10 m apart and 
connected by a 20 m drift fence). However, installation 
of buckets caused considerable soil disturbance and the 
nature of the local soils conditions meant these (a) were 
difficult to install; and (b) were pushed out of the ground 
in wet conditions. Preliminary active searches were trialed 
at a sub-set of sites within 50 m of each star pickets. A 
comparison of results derived from the two approaches 
was made, and it was found that there were no significant 
differences in species richness or detection of individual 
species between methods. It was, therefore, decided that 
active searches would be used for the full experiment. 

Active searches were conducted at the end of summer 
2007. This was done to detect adults as well as the young 
from the preceding spring/summer period. Active searches 
were made at all 96 1 ha sites over a period of 30 minutes 
each. Observers searched substrates such as logs, rocks and 
bark, and also scanned the logs for basking reptiles with 
binoculars. The location and substrate also were noted. 
As with bird surveys, observers were assigned to polygons 
randomly, each site was observed by two observers on two 
different days and sites were surveyed in reverse order on 
the second day. Amphibians, were not a target of this survey 
method, but were recorded when found.

Statistical analysis
The variety and complexity of the data being collected 
requires many different models for their statistical 
analysis. The packages GenStat (VSN International 
Ltd, Hemel Hempstead, UK) and R (R Development 
Core Team 2010) are being used for the bulk of 
the statistical computation. Statistical methods to 
be used will include analysis of variance and the 
fitting of generalized linear mixed models, as well as 
multivariate methods such as correspondence analysis 
(Greenacre 2007). The effect of spatial dependence 
between sites should be largely eliminated by the 
randomization. However methods outlined in Diggle 
and Ribeiro (2007) will be also used to explicitly deal 
with possible residual spatial dependence. This will 
guard against spuriously inferring significant treatment 
and covariate effects which might result from ignoring 
spatial correlation. Where possible, all analyses will 
be undertaken or supervised by practicing statistical 
professionals to ensure the latest techniques emerging 
from statistical science are utlilized where approprate. 

Results

Baseline bird surveys 2006
A total of 85 bird species was detected in the 2006 bird 
surveys (74 in Mulligans Flat and 71 in Goorooyarroo). 
The total number of individual birds detected within 50 
metres of observers was 2370 in Mulligans Flat and 2290 
in Goorooyarroo (4660 in total). Of the 12 woodland 
birds listed as threatened in the ACT, New South Wales 
or other jurisdictions, five were found to be present in 
the two reserves. These were the M. cucullata (seven 
observations in Mulligans Flat but zero in Goorooyarroo), 
White-winged Triller Lalage sueurii (24 in Mulligans Flat, 
14 in Goorooyarroo), D. chrysoptera (10 in Mulligans Flat, 
10 in Goorooyarroo), Superb Parrot Polytelis swainsonii 
(one in Mulligans Flat and 37 in Goorooyarroo) and 
Speckled Warbler Chthonicola sagittata (five in Mulligans 
Flat and two in Goorooyarroo). Two additional species 
were detected which are also considered of conservation 
concern or in low numbers despite suitable habitat in 
the ACT (Cunningham and Rowell 2005). These were 
the Dusky Woodswallow Artamus cyanopterus) (two in 
Mulligans Flat and three in Goorooyarroo) and the Jacky 
Winter Microeca fascinans (four in Mulligans Flat; zero in 
Goorooyarroo). 

Species richness was calculated at each site for all birds 
within 50 m of the observer. Analyses of variance of the 
logarithm of species richness in 2006 at Goorooyarroo 
and at Mulligans Flat are shown in Table 1. On average, 
fourteen species were detected per site. Analysis of 
baseline bird data showed that within-polygon variation 
was smaller than between-polygon variation. This means 
that sites within polygons are more similar to each other 
than sites from different polygons. Between-site variances 
were similar for the two reserves, but differences between 
polygons were greater at Goorooyarroo. In the analyses, 
30 variance ratios were calculated, and two of these were 
significant at the 5% level. This is consistent with what 
would be expected in the absence of treatment effects.  
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Baseline active searches for reptiles in 2007
After 2880 minutes of active searches in 2007, 265 
individual reptiles were detected (146 in Goorooyarroo 
and 119 in Mulligans Flat). A total of 12 reptile species 
was detected in active searches (nine in Mulligans Flat 
and ten in Goorooyarroo). The two species detected in 
Mulligans Flat that were not detected in Goorooyarroo 
were the Spotted-backed Skink Ctenotus orientalis and 
Dwyer’s Snake Suta dwyeri. The three species detected 
in Goorooyarroo and not Mulligans Flat were the 
Eastern Brown Snake Pseudonaja textilis, Common Blue 
Tongue Tiliqua scincoides and Garden Skink Lampropholis 
guichenoti. The most commonly detected reptile was 
Boulenger’s Skink Morethia boulengeri (71 observations) 
in Goorooyarroo and Delicate Skink L. delicata (37 
observations) in Mulligans Flat. In pilot pitfall trapping in 
Goorooyarroo in 2004, two additional reptile species were 
detected, the Blind Snake Ramphotyphlops nigrescens and 
the Stone Gecko Diplodactylus vittatus. 

Results of analyses of variance of the logarithm of species 
richness+1 in 2007 Mulligan’s Flat and Goorooyarroo are 
shown in Table 2. On average 1.4 species were detected 
per site. Three of the 30 variance ratios calculated were 
significant at the 5% level. Again this is consistent with 
what might be expected in the absence of treatment 

effects. In this case, the variation between sites from 
different polygons was similar to the variation between 
sites from the same polygon.

In total, 61 individual amphibians were detected in 2007 
(one observation in Goorooyarroo and 60 in Mulligans 
Flat). Three species of amphibian were detected (three 
in Mulligans Flat and one in Goorooyarroo). Analyses 
of variance for both abundance and species richness of 
amphibians did not give meaningful results because of the 
small numbers of animals involved.

Baseline small mammal tracking tunnels 2006 and 
2007
Few small mammals were detected in Mulligans Flat and 
Goorooyarroo Nature Reserves in both tracking tunnel 
periods, despite considerable survey effort (3072 trap nights). 
In the two surveys (2006 and 2007), four mammal species 
were detected: possum spp. (a non-target species), S. murina, 
House Mouse Mus musculus and rat Rattus spp. Of the target 
species, M. musculus was detected only in Goorooyarroo 
in 2006 (two individuals), and S. murina in 2007 only (six 
individuals). Of the target species in Mulligans Flat, two S. 
murina, one M. musculus and one Rattus spp. were detected 
in 2006, and only S. murina was detected in 2007 (one 
individual). No A. flavipes was detected.

Table 1 – Table showing analyses of variance of the logarithm of bird species richness for the two reserves in 2006. 
Species richness calculated from all birds within 50 m of the observer at a site. Interactions of more than two factors 
are not included.

Goorooyarroo Nature Reserve Mulligans Flat Nature Reserve
Term Degrees of freedom Mean square Significance level Mean square Significance level
Polygon pair stratum
Experimental class (EC) 2 0.252 0.024
Kangaroo exclusion (KE) 1 0.306 0.327
EC x KE 2 0.667 0.019
Polygon stratum
Burn x Clumped 1 0.015 0.86 0.010 0.79
Burn x Dispersed 1 0.348 0.43 0.024 0.69
Clumped x Dispersed 1 0.001 0.96 0.084 0.47
Residual 3 0.429 0.122
Site stratum
Burn 1 0.046 0.33 0.168 0.06
Clumped 1 0.013 0.60 0.071 0.21
Dispersed 1 0.202 0.05 0.000 0.99
Burn x Clumped 1 0.067 0.24 0.146 0.08
Burn x Dispersed 1 0.236 0.03 0.023 0.47
Clumped x Dispersed 1 0.000 0.99 0.005 0.73
Burn x EC 2 0.106 0.12 0.010 0.80
Clumped x EC 2 0.043 0.40 0.078 0.18
Dispersed x EC 2 0.083 0.19 0.001 0.97
Burn x KE 1 0.013 0.60 0.022 0.48
Clumped x KE 1 0.000 0.98 0.003 0.79
Dispersed x KE 1 0.000 0.95 0.002 0.82
Residual 21 0.046 0.042
Total 47 0.123 0.051
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In summary, small mammals were detected at very low 
densities in both reserves, and it was consequently not 
possible to test for treatment effects. For this reason, it was 
decided to suspend trapping until all treatments were in 
place and the feral animal-proof fence was constructed in 
Mulligans Flat (completed in June 2009).

Ground layer and soil measurements
Several vegetation and soil variables were analysed 
to check for pre-treatment effects. The number of 
significant variance ratios calculated was consistent with 
the assumption of no effects prior to the application 
of treatments. However, for some variables, between-
polygon variation was substantially larger than within-
polygon variation. A summary of comparisons for key 
variables is presented in Table 3. 

Total ground layer biomass in both reserves was low, 
reflecting the ongoing drought and high levels of kangaroo 
grazing (Mulligans Flat: range 204 to 2352, mean 592, 
median 381 kg/ha; Goorooyarroo: range 289 to 1833, 
mean 289, median 430 kg/ha).  An unfertilized Themeda 
(kangaroo grass) sward in this region has the production 
potential 3200 kg ha-1yr-1 in the Southern Tablelands 
(Keys 1996).  The Themeda swards in the reserves sampled 
in spring 2007 had an average biomass (green and dead) 

of 352 kg/ha.  In addition, it is recommended that after a 
drought, grasslands need to accumulate 800-1000 kg/ha 
green matter to give plants time to replenish their energy 
reserves (Keys 1996).

Discussion 
A number of key conclusions emerge from the analysis 
of baseline data from the Mulligans Flat-Goorooyarroo 
Woodland Experiment:

1. the lack of pre-treatment effects shows that the
experimental framework provides a strong inferential
framework for tracking the effects of habitat
manipulations;

2. while the number of bird species observed was
relatively high, some species of conservation concern
were absent or in low numbers;

3. small mammal species that are typical of Yellow Box-
Blakely’s Red Gum Grassy Woodlands (see Van Dyck
and Strahan 2008) are absent or in very low densities;

4. reptile species richness and abundance was relatively
low. Large snakes were detected at very low densities;

5. total plant biomass, which underpins the woodland
ecosystem, was very low in most sites (see detailed
discussion in McIntyre et al. 2010.). Low biomass

Table 2. Table showing analyses of variance of the logarithm of reptile species richness+1 for the two reserves in 
2007. Species richness calculated from all reptiles observed at a site. Interactions of more than two factors are 
not included.

Goorooyarroo Nature Reserve Mulligans Flat Nature Reserve
Term Degrees of freedom Mean square Significance level Mean square Significance level
Polygon pair stratum
Experimental class (EC) 2 0.066 0.380
Kangaroo exclusion (KE) 1 0.123 0.005
EC x KE 2 0.219 0.149
Polygon stratum
Burn x Clumped 1 0.240 0.41 0.004
Burn x Dispersed 1 0.541 0.24 0.060
Clumped x Dispersed 1 0.021 0.80 0.000
Residual 3 0.258 0.000
Site stratum
Burn 1 0.111 0.43 0.075 0.59
Clumped 1 0.248 0.24 0.391 0.22
Dispersed 1 0.934 0.03 0.000 0.98
Burn x Clumped 1 0.412 0.13 0.244 0.33
Burn x Dispersed 1 0.563 0.08 0.631 0.13
Clumped x Dispersed 1 0.236 0.25 0.019 0.78
Burn x EC 2 0.069 0.67 0.220 0.43
Clumped x EC 2 0.090 0.60 0.133 0.59
Dispersed x EC 2 0.128 0.48 0.201 0.46
Burn x KE 1 0.018 0.75 1.228 0.04
Clumped x KE 1 0.011 0.94 0.197 0.38
Dispersed x KE 1 1.001 0.02 0.180 0.40
Residual 21 0.168 0.249
Total 47 0.123 0.051
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means that the grassy understorey in much of the 
reserve area has developed a lawn structure (e.g. 
Figure 4) which is insufficient to provide habitat 
for many faunal species (McIntyre 2005) and soil 
functioning (McIntyre and Tongway 2005). 

Overall, baseline faunal surveys suggest that even 
the good example of Yellow Box-Blakely’s Red Gum 
Grassy Woodland at Mulligans Flat and Goorooyarroo 
Nature Reserves is in a lesser quality condition for 
some key faunal groups expected. The lack of genuine 
significant effects prior to application of treatments 
shows that effects observed in the future are likely 
to reflect genuine differences between experimental 
treatments.

Birds
The number of birds observed and species richness 
was reasonable, but lower than surveys in similar 
woodlands conducted at the same time of year (Bounds 
et al. 2010). For example, temperate woodland bird 
surveys on the south-west slopes of New South Wales 
have resulted in the detection of 119 (Lindenmayer 
et al. 2008) and 159 (Cunningham et al. 2008) bird 
species respectively. The absence or low densities 
of threatened bird species that should be typical of 
these woodlands in Mulligans Flat - Goorooyarroo is 
a matter for conservation concern. Of the resident 
threatened species or species of concern that have 
been recorded in Mulligans Flat or Goorooyarroo in 
the past (Cunningham and Rowell 2005), three were 
not detected in surveys. These were C. picumnus, S. 
guttata, and F. frontatus.

Small mammals
The results of baseline surveys show that small 
mammals were found at very low densities in 
Mulligans Flat and Goorooyarroo Nature Reserves. 
Elliot trapping in Goorooyarroo produced no captures. 
This agrees with findings of Fischer (unpublished 
report) who conducted Elliot trapping in Mulligans 
Flat in 1999 and caught no small mammals in 900 trap 
nights. With such low small mammal densities, Elliot 
trapping is not considered a cost-effective trapping 
technique at this point in time. Footprint tracking 
tunnels were more successful than Elliot traps – 

especially because S. murina can be detected with 
this method. The continued presence of S. murina is 
a significant discovery because the presence of the 
species was previously uncertain. Antechinus flavipes 
was not detected, and now appears to be absent 
from the reserves. If A. flavipes is still present in the 
reserves, it is probably occurs very locally and at very 
low densities. If it is still present, it may naturally 
increase with removal of feral predators, addition of 
CWD and exclusion of kangaroos. Additional surveys 
targeted at specific key habitat elements in Mulligans 
Flat and Goorooyarroo were undertaken in August 
2008 but no A. flavipes were detected (Victoria 
Sheean, unpublished data).

The almost complete absence of M. musculus was 
unexpected. However, this may be because new 
suburbs have only recently been established on the 
boundaries of the reserves and are yet to have an 
effect in terms of elevating numbers of this exotic 
pest rodent species. It is anticipated that M. musculus 
numbers will increase as suburbs develop and future 
monitoring should detect any changes.

Reptiles
The species richness of reptiles (12 across both 
reserves) was lower than some studies in similar 
habitat. For example, Cunningham et al. (2007) 
detected 22 species in a region west of the ACT 
using both active searches and artificial substrates. 
In another study, also west of Canberra, Fischer et al. 
(2004) detected 18 species using pitfalls and active 
searches. However, species detections were similar 
to those found by Brown et al. (2008) in Victoria (10 
species, 152 individuals) using transect censuses and 
active searches. 

Another interesting outcome of our surveys was that 
large individuals of P. textilis were rarely observed 
(although juveniles were captured in pits, and shed 
skins were found). The species appears to be at low 
densities. This may be due to low detection using 
the active search methodology or the relatively low 
number of prey as indicated in other surveys. If small 
mammals, reptiles and amphibian numbers increase in 
response to treatments, it is predicted that the number 
of large brown snakes will increase in the future.

Table 3. Comparison of between and within polygon residual variation for vegetation and soil variables

Variable Goorooyarroo Nature Reserve Mulligans Flat Nature Reserve
Between polygons Within polygons Between polygons Within polygons

Total biomass(t/ha) 0.196 0.050 1.07 0.13
Litter % 157.4 42.9 198.3 56.8
Mean litter depth 1.65 4.98 7.86 9.84
NO3 9.36 4.06 3.41 1.98
Total carbon % 0.96 0.15 2.24 0.17
Total nitrogen % 0.00185 0.000623 0.00904 0.00076
Organic matter % 3.16 0.52 7.74 0.57
pH CaCl2 0.251 0.027 0.102 0.011
Phosphorus 15.5 4.9 41.6 4.52
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The future
Our analysis of baseline data demonstrates that the 
experimental design provides a strong inferential 
framework for future research. As well as ongoing 
monitoring of post-treatment effects, new research 
opportunities also will be able to take advantage of the 
experimental design. With the building of the Mulligans 
Flat Woodland Sanctuary, which encloses the Mulligans 
Flat half of the experiment with a feral animal-proof 
fence (Figure 2), there will be considerable scope for 
further research, such as on the interaction of current 
experimental treatments, the absence of feral foxes, 
cats, rabbits and hares, and the reintroduction of locally 
extinct species. Such restoration experiments, under 

controlled conditions and with active collaboration 
between researchers and the managers of the nature 
reserve, provide unique opportunities for research that 
might not otherwise be possible. These conditions will 
allow the experimental investigation of the ecological 
processes associated with reconstructing Yellow Box-
Blakely’s Red Gum Grassy Woodland. 

While post-treatment responses to the experimental 
treatments are anticipated within the lifetime of the 
current funding up to (December 2010), the effects of 
treatments will continue to develop over the long-term. 
It is therefore planned that this experiment will be a long-
term ecological research site for understanding temperate 
woodland restoration. 
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Abstract Despite increasing revegetation of cleared

landscapes around the world, there is limited research

on the implications of different types of plantings for

birdlife. We examined the ‘‘intersection effect’’,

whereby species richness is higher at the intersection

of ‘‘corridors’’ or vegetation strips for birds inhabit-

ing replanted areas. We also examined individual

species responses. Replicated sites at the intersections

of plantings were compared with ‘‘internal controls’’

(located in the same plantings *100 m from inter-

sections), ‘‘external controls’’(sites in isolated linear

plantings), and block plantings. We surveyed the 39

sites in our experimental design repeatedly – on

different days by different observers and in different

seasons. We found no significant difference in

species richness between intersections and block

plantings, but intersections had higher species rich-

ness than isolated linear strips and the internal

controls. Similar results were found for bird assem-

blage scores derived by correspondence analysis. We

found evidence of extra-variation at the farm-level

for species richness and derived assemblage scores,

suggesting a farm-scale response. This suggests the

importance of other (often unmeasured) factors at the

farm level (e.g. baiting for feral animals). Our results

suggest that replanting programs aimed at maximiz-

ing bird species richness may benefit from

consideration of planting geometry. In particular,

linking strip plantings to create intersections and/or

establishing block plantings appear to be superior to

isolated strips for aggregate species richness.

Keywords Agricultural landscapes �
Replanting � Temperate woodlands �
Australia

Introduction

The topic of wildlife corridors remains one of the

most controversial areas of landscape ecology and

conservation biology (Noss 1987; Simberloff et al.

1992; Rosenberg et al. 1997; Noss and Beier 2000;

Lindenmayer and Fischer 2007). One of the impor-

tant roles of corridors is creating a conduit to

facilitate the movement of organisms; another is

providing habitat for plant and animal species

(Bennett 1998; Levey et al. 2005; Lindenmayer and

Fischer 2006). However, Forman (1995) recognized

that not all parts of corridors may be created equal for

biota and he described an ‘‘intersection effect’’,

whereby ‘‘intersection nodes exhibit ecological char-

acteristics different from those along a corridor’’

(Forman 1995, p. 266). Evidence for intersection

effects comes from empirical studies in Europe and
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North America which have found that the richness of

birds, plants, and invertebrates can be higher at nodes

(i.e. at the intersection) of two or more corridors than

elsewhere in a corridor (e.g. Baudry 1984; Lack

1988; Fry 1989; Riffell and Gutzwiller 1996).

There are important opportunities to explore

intersection effects in Australian farmland land-

scapes, particularly in such areas as the temperate

woodlands of the south-east and south-west of the

continent. Native vegetation in these landscapes has

been heavily cleared in the past (Benson 1999; Hobbs

and Yates 2000; Lindenmayer et al. 2005), but major

restoration efforts have commenced (Bennett et al.

2000; Brooker 2002) and strips of replanted vegeta-

tion are becoming increasingly common (Greening

Australia 2001; Salt et al. 2004). Recent studies have

indicated that replanted areas are used as habitat by

birds (Ryan 2000; Greening Australia 2001; Kinross

2004; Martin et al. 2004) and reptiles (Kavanagh

et al. 2005; Cunningham et al. 2007). If intersections

between such replanted areas are different from other

parts of these revegetated strips or ‘‘corridors’’ in

terms of the biota they support, then this may have

implications for the way revegetation programs are

planned both in space and time. Given this, we

describe the results of a study of the intersection

effect on the south-west slopes of New South Wales,

south-eastern Australia. Specifically, we sought to

determine: (a) If the diversity of bird species was

higher at the intersections of planted strips than in

other revegetated areas, and (b) If particular bird

species were significantly more or significantly less

likely to be recorded at the intersections of planted

strips than in other kinds of revegetated areas.

Methods

Study area, experimental design and field survey

This study was conducted in the South West Slopes

region of New South Wales which was formerly

dominated by temperate native woodland (sensu

Hobbs and Yates 2000). The native vegetation has

been more extensively altered than any other vege-

tation province in New South Wales (Benson 1999),

with an estimated 85% of the original cover of native

vegetation removed in the past 200 years for

domestic livestock grazing and/or cropping (Gibbons

and Boak 2002). Revegetation programs to tackle

problems with soil erosion, salinity and biodiversity

conservation have been widespread throughout the

south west slopes of New South Wales for the past

15–20 years (Freudenberger and Harvey 2004; Salt

et al. 2004).

We selected sites on eight different grazing/

cropping properties distributed across an area of

several hundred km2 in the Murrumbidgee and

Murray catchments on the South West Slopes. These

farms were 750–1000 ha landholdings owned pri-

vately or leased by a given landholder or managed by

a farmer for a large pastoral company. We selected

four kinds of sites: (1) the intersection of linear

plantings, (2) an internal control in the same planting

(i.e. a site in the same revegetated strip as the

intersection but located 100 m away from the inter-

section), (3) an isolated linear strip (located at least

350 metres away from other areas of revegetation)

and which acted as an external control, and, (4) a

non-linear or block planting. We grouped a repre-

sentative of each kind of site together using a

statistical block design (one representative of each

treatment per statistical block) by farm. There was

one statistical block per farm, with the exception of

two farms, each of which had two statistical blocks

located on opposite farm boundaries (3.3 and 3.9 km,

respectively). One farm has no block plantings.

Hence, the study comprised five properties, each

with one block of four treatments (20 sites), two

properties with two blocks each with four treatments

(16 sites) and one property with one block comprised

of three treatments (3 sites). This gave a total of 39

sites in the study.

All survey sites (except the block plantings) were

linear tree plantings 20–40 m wide and up to 2.1 km

long. The average area of linear tree plantings was

5.7 ha. Block plantings were non-linear revegetated

areas 70 m or more wide with a mean area of 5.3 ha.

We ensured that all plantings were 15–20 years old to

limit the potential for planting age effects (see

Greening Australia 2001) to confound other results.

Tree species in the plantings were broadly similar –

dominated primarily by local Eucalyptus and Acacia

spp. In addition, we ensured that all sites were located

in valley floors to remove the potential for effects of

topography on our findings. Thus, we attempted to

control for key factors like planting age and
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composition that have the potential to influence bird

species occurrence in replanted areas (Greening

Australia 2001; Salt et al. 2004). All plantings were

*400 m from patches of remnant native woodland.

This was to limit the potential for connectivity

between different kinds of vegetation to influence

our results.

We established four permanent survey points, set

at the corners of a 20 · 20 metre square at each of

the 39 survey sites. We completed five-minute point

interval counts (sensu Pyke and Recher 1983) to

record all birds seen or heard within 25 m radius

around each of the four sample points at each site.

The four treatments differed in planting geometry and

so the area surveyed could not be the same at each

site and hence between different planting types.

Descriptive statistics for survey area are summarized

in Table 1. In a given survey, each site was counted

by a different observer on a different day. This was to

reduce day effects on bird counts (Field et al. 2002)

and also limit the impacts of observer heterogeneity

(see Cunningham et al. 1999). Two highly skilled and

experienced observers (MC and DM) completed all

bird counts during spring 2004 and winter 2005. We

note that year differences are confounded with

seasonal differences in this design, so we are unable

to separate year effects from seasonal effects. Hence,

hereafter we refer to what we term potential ‘‘season’’

effects. In summary, for each survey season, we

completed 40 min of counts at each site (4 sample

points · 2 counts by different observers on different

days). This gave 80 minutes of counts overall for

each site over the duration study.

Statistical analyses

We pooled counts across the four survey points at a

given site and also pooled data across observers and

days. These data were expressed as presence or

absence of a species (binary data) at each site in each

season. This was done to reduce the effect of possible

errors that may arise due to failures in detection.

Thus, we consider our binary data as a single

realization of the probability of site observed occu-

pancy. We consider our data unsuitable for

attempting separate estimation of detection probabil-

ities and the true probability of occupancy, but rather

regard our observations as subject to measurement

error. We henceforth regard our response as the

probability of occupancy, conditional on a constant

high detection probability. Survey number (i.e. sea-

son: two levels), planting type treatment (four levels:

intersection, block planting, external controls or

isolated linear strip, internal control) and their

interaction were fixed factors. As the area surveyed

differed between planting types, area surveyed was

considered as a covariate in our analysis. We

specified farms (statistical blocks) as a random factor.

We used Generalized Linear Mixed Model (GLMM)

framework for our analyses (Schall 1991; Galwey

2006), in particular the general linear mixed model

(for species richness data) and linear logistic case

with the dispersion parameter set to 1 (for binary

data).

For the analysis of species richness, we assessed

the statistical importance of the following farm-level

covariates, measured by aerial photography and then

ground-truthed on foot.

• The area of remnant vegetation on a farm.

• The area [ha] of plantings on a farm.

• A planting edge index (the total perimeter of

plantings as a proportion of the planted area,

measured in m ha–1).

• The amount of cleared land (the area [ha] of a

farm that had been cleared of vegetation).

• The number of paddock trees (the number of

large, isolated trees remaining within otherwise

Table 1 Summary

statistics for survey area

classified by planting type

Planting type Mean sd 5.0% Median 95.0%

Block 0.7498 0.050 0.6479 0.7753 0.7844

Isolated strip 0.1701 0.062 0.0982 0.1567 0.2928

Internal control 0.1903 0.087 0.0914 0.1784 0.4067

Intersection 0.2656 0.067 0.1511 0.2658 0.3613
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cleared paddocks, expressed as number of trees

per ha of farm area).

• Dominant land use (cropping, grazing).

We performed separate analyses for individual

species presence/absence for those species recorded at

[10% of sites. To examine patterns in the structure

of the species assemblage, we performed a corre-

spondence analysis (Greenacre 1984) on the entire

bird species presence/absence matrix. Correspon-

dence analysis involved deriving a set of scores for

observations (rows = years · sites) and a set of

species scores (columns of the data matrix) so that

they were as highly correlated as possible for the

bivariate distribution represented by the counts in the

table. Mathematically, the solution to the problems

can be viewed as an eigen analysis of chi-squared

distances.

Results

Species diversity

A global test showed that the four planting types

(treatments) differed significantly (P \ 0.001) in the

number of species they supported and this pattern was

consistent over the two seasons of our study. We

show in Fig. 1 that intersections had higher species

richness than internal controls and isolated linear

strips, but there were no significant differences in

species richness between intersections and block

plantings.

After making a covariance adjustment for the area

surveyed, the above pattern remained despite the fact

that aggregate survey effort was confounded with

planting type. There was evidence that the strength of

the relationship between number of species and area

surveyed was different according to the level of

aggregation of data.

The winter survey had significantly lower overall

species richness than the spring survey of the

previous year (P \ 0.001). We found a significant

(P \ 0.001) positive effect of the density of paddock

trees on species richness; there was an increase of

*1 species (95% CI: 0.5, 1.7) for an increase of 0.1

paddock trees per ha.

We explored the effect of scale on bird species

richness by determining the components of the

variance of the random effects at the farm (statistical

block) level. Note that site and site by season

variability was the same and so were pooled (residual

variance). The component of variance for farms

(statistical blocks) was statistically significant

(v1
2 = 8.99, P \ 0.001). This translated into an

intra-farm (statistical block) correlation of 0.26 in

bird species richness. That is, there was greater

similarity in bird species richness between sites on

the same farm than there was between sites across

farms.

Individual species responses

We recorded sixty-five species of birds in the study.

Of these, 39 were ‘‘rare’’ (occurred on \10% of sites/

seasons). For species with sufficient data, we found

few instances of a statistically significant difference

in occupancy rates associated with planting type.

These essential results did not change after adjusting

for survey area. Two indicative responses were as

follows. The Grey Shrike-thrush (Colluricincla har-

monica) was encountered most often in block

plantings and least often in linear strips and internal

Fig. 1 Estimated mean species richness across planting

treatments for the two surveys. Bars are 95% confidence

intervals. Treatment abbreviations are block plantings (block),

external controls (external), internal controls (internal) and

intersections (inter)
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controls (P = 0.04 overall). A similar pattern

occurred for the Red Wattlebird (Anthochaera car-

unculata) which was found more often in block

plantings compared to other planting types

(P = 0.05). As would be expected, due to for example

the presence of migratory taxa, species-specific

differences between seasons were common but we

have not reported them here. We found no instances

of season by planting type interactions.

Many individual species showed significant

(P \ 0.05) extra-variation at the farm level. Notable

among these were the Red-rumped Parrot (Psephotus

haematonotus), Eastern Rosella (Platycercus eximi-

us), Rufous Songlark (Cinclorhamphus mathewsi),

Red Wattlebird, Flame Robin (Petroica phoenicea),

Noisy Friarbird (Philemon corniculatus), Noisy

Miner (Manorina melanocephala), Blackbird (Turdus

merula), Magpie Lark (Grallina cyanoleuca) and the

Superb Fairy Wren (Malurus cyaneus). Such results

for these individual taxa suggest they respond to

coarse-scale (farm-level) features such as different

farm-level management practices, rather than plant-

ing-level features.

Bird assemblages

The results of our correspondence analysis (Greena-

cre 1984) which measured the strength of the

association between species and site/season using

the community presence-absence matrix, showed

there was a significant planting type effect for both

the first and second axis (P = 0.03 and P = 0.001,

respectively). These significant effects were essen-

tially driven by block plantings being different from

the three other kinds of plantings. There also was a

significant effect of survey number for the second

axis (P = 0.003). Planting type by survey time

interaction was not significant, nor was the survey

area a significant covariate. None of the farm-level

covariates were significant for either axis. Finally, we

found strong evidence of a significant random farm

effect for both the first and second axis v1
2 = 22,

P \ 0.001 and v1
2 = 14.5, P \ 0.001, respectively,

which translated into intra-farm correlations of 0.41

and 0.38, respectively. That is, there was greater

similarity in the bird assemblages between sites on

the same farm than there was on between sites on

different farms.

Discussion

Species richness

We found that bird species richness was significantly

lower in isolated linear strip plantings (external

controls) and linear arms (internal controls) than for

intersections or block plantings. However, intersec-

tions were not significantly different to block

plantings. Our results of higher species richness in

intersected plantings broadly support findings from

elsewhere around the world (Europe and North

America) where intersection effects have been iden-

tified for a range of groups including birds,

invertebrates and plants (Baudry 1984; Lack 1988;

Fry 1989; Riffell and Gutzwiller 1996; Némethová

and Tirinda 2005).

Some workers (see Forman 1995) have suggested

that intersections of ‘‘corridors’’ such as riparian

strips are characterized by higher levels of nutrients

and water flow than elsewhere in a landscape – and

this underpins patterns of increased species richness.

However, in our study area, replanted areas are often

not associated with watercourses and are therefore

unlikely to support elevated levels of nutrients and

water availability, although other kinds of studies

than the one we completed would be required to

confirm this.

Increased bird species richness might be expected

to occur at intersections if bird movements are

limited in open areas and largely restricted to strips

of linear replantings leading to possible ‘‘funneling’’

of movements (e.g. Némethová and Tirinda 2005).

This might contribute to the higher species richness

we observed at intersections relative to internal and

external control sites. However, while some wood-

land bird species in south-eastern Australia may be

dispersal- or movement-limited (e.g. the Brown

Treecreeper [Climacteris picumnus]; Cooper et al.

2002), a large number appear to be relatively mobile

and many seem able to cross open areas (Fischer and

Lindenmayer 2002).

Area surveyed was not an alternative explanation

for higher species richness at intersections and in

block plantings. A simple normalization by dividing

number of species by the area surveyed showed that

block plantings have fewer bird species than inter-

sections, arms or linear strips. This normalization is

appropriate if the number of species is proportional to
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the area surveyed, which is not the case for our data.

Because geometry, area surveyed and possibly

detection rates are intrinsically confounded, caution

needs to be exercised when interpreting these data.

Although we found statistically significant plant-

ing type effects, the number of additional species in

block plantings and intersections was comparatively

small (*two bird species) relative to internal

controls and isolated linear strips (external controls).

These differences are also relatively small in com-

parison with overall levels of species richness that

can be recorded in non-replanted areas of native

vegetation (i.e. old growth woodland remnants)

(Freudenberger 2001; Seddon et al. 2001). Neverthe-

less, our results are important because they reflect a

systematic response of altered species richness in the

environments (planting geometries) that we subjected

to rigorous assessment.

Farm-level random effects

We found strong evidence of extra-variation at the

farm level for species richness, assemblage scores

and some individual taxa. These findings support the

idea of farm-scale effects for birds in our study. Scale

effects are not surprising, are common and many

plausible reasons exist for them. It has been well

documented that entities close together (such as

occupancy of patches by a species) will be more

similar than ones far apart (e.g. Smith 1994; Koenig

1998). Another possible reason is that between-farm

differences in management practices might affect

bird populations. These were not explicitly measured

in this study, but a possible example is the baiting for

feral predators such as the Red Fox (Vulpes vulpes)

which is likely to have been applied on some farms

but not others. Another is the use of fertilizers and

other chemicals at the farm level, which other studies

have suggested might influence bird populations on

farms (Barrett 2000).

We conducted our surveys in different seasons and

our analyses revealed season effects. These were

expected as woodland bird assemblages are com-

prised of altitudinal and latitudinal migrants that

undertake seasonal movements which influence the

composition of bird communities at different times of

the year (Keast 1968; Robinson 1992; Er and

Tidemann 1996).

Management implications

Replanted areas are seen as an increasingly important

part of heavily cleared temperate woodland land-

scapes (Lambeck 1999; Brooker 2002; Bond 2004;

Freudenberger and Harvey 2004; Cunningham et al.

2007) and there is presently a major push to increase

vegetation cover to tackle issues of salinity and soil

erosion in Australia (Stirzaker et al. 2002). The value

of replantings for biodiversity is not well known but

an increasing number of studies are highlighting their

use by some taxa (Greening Australia 2001; Freu-

denberger and Harvey 2004; Martin et al. 2004;

Kavanagh et al. 2005; Cunningham et al. 2007). This

study has found that plantings are used by a number

of species of birds and that the intersections of

replantings are similar in species richness to block

plantings, but support more bird taxa than isolated

planted strips. Block plantings are clearly important

but are often difficult to establish because of space

constraints on a farm and the potential to reduce the

size of valuable grazing paddocks. By contrast, the

establishment of linear plantings around paddock

perimeters is a commonly applied revegetation strat-

egy (Greening Australia 2001). Where the

establishment of block plantings is difficult, and

maximizing bird species richness is a management

objective, based on our preliminary findings, an

appropriate strategy might be to physically link linear

plantings to create intersections.
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